Virtuelle Abgassensoren für Dieselmotoren

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von Dipl.-Ing. Roman Messing geb. am 7. Oktober 1982 in Münster genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Magdeburg

Gutachter:

Prof. Dr.-Ing. Dr. h.c. Helmut Tschöke

Prof. Dr.-Ing. Dr. h.c. Rolf Isermann

Promotionskolloquium am 16.01.2014

Inhaltsverzeichnis

1	Einleitung				
2	On-l	Board-	fähige Emissionssensoren	3	
3	Gru	ndlage	n	9	
	3.1	Dieselmotorische Prozesse		9	
		3.1.1	Ladungswechsel	9	
		3.1.2	Einspritzung und Gemischbildung	10	
		3.1.3	Verbrennung	12	
	3.2	Schad	Istoffbildung der dieselmotorischen Verbrennung	18	
		3.2.1	Stickoxide	19	
:		3.2.2	Partikel	23	
		3.2.3	Unverbrannte Kohlenwasserstoffe	29	
		3.2.4	Kohlenstoffmonoxid	34	
		3.2.5	Kohlenstoffdioxid	36	
		3.2.6	Das Emissionsverhalten im Kaltstart	37	
	3.3	Motor	management	37	
		3.3.1	Kraftstoff- und Luftpfad	38	
	٠	3.3.2	Moderne Motormanagementkonzepte	41	
	3.4	On-Bo	pard-Diagnose	42	
	3.5	Identif	ikation nichtlinearer Systeme	43	
		3.5.1	Verschiedene Ansätze für statische Modelle	45	
		3.5.2	Der Ansatz mit lokal linearen Teilmodellen	47	
_					
4			ufbau und -durchführung	. 51	
	4.1		ersuchsmotor	51	
	4.2		C/Fl ^{2RE}	52	
	4.3		echnik	53	
	4.4	Messp	programm	57	

5	Modellbildungsablauf						
	5.1	Auswahl geeigneter Eingangsgrößen	59				
		5.1.1 Anforderungen	59				
	•	5.1.2 Auswahl	60				
5.2		Erstellung des Datensatzes zur Identifikation	62				
	5.3	Modelladaption	64				
	5.4	Ablauf der Validierung am Prüfstand	64				
•							
6	_	Modellstruktur					
	6.1	Berechnung wichtiger Eingangsgrößen	67				
	6.2	Die Emissionsmodelle	70				
7	Validierung der Modelle						
	7.1	Modellergebnisse	76				
		7.1.1 NO _x -Modelle	76				
		7.1.2 Ruß-Modelle	81				
		7.1.3 CO-Modelle	85				
		7.1.4 HC-Modelle	90				
		7.1.5 CO ₂ -Modelle	94				
		7.1.6 CO ₂ -Bilanzierung	97				
	7.2	Modellierung der AGR-Rate	99				
	7.3	Modellierung von Blowby-Massenstrom und -Konzentrationen	101				
	7.4	Emissionsverhalten im Warmlauf	107				
8	Feh	lerbetrachtung	115				
	8.1	Fehlerfortpflanzung am Beispiel des virtuellen NO_x -Sensors	115				
	8.2	Einfluss der Modellstruktur auf die Modellqualität					
	8.3	HC-Rückstände					
9	Zusammenfassung und Ausblick						
10	10 Bibliografie 129						
ه. د.	11 Abkürzungen und Formelzeichen 143						
- 11	11 Abkürzungen und Formelzeichen 143						

A	Anhang				
	A.1	Berechnungen	147		
	A.2	Sensoren-Kennfelder	150		
	A.3	Anwendung des virtuellen NO _x -Sensors zur Regelung	155		
	A.4	Daten zur Messtechnik	158		
	A.5	Messprinzipien der Abgasanalyse	161		
,					

•