Eckart Zwicker

Simulation und Analyse dynamischer Systeme in den Wirtschafts- und Sozialwissenschaften

TECHNISCHE	HOCHSCHULE Fachbereich 1	DARMSTADT
Ges	amtbibliot	hek
	swirtschaf	islehre
Inventa:-Nr. :	35, 296	
	A14/97	7
Sachgebiete:	1.6.4	
	1.0.9	••••••••••••••••••••

Walter de Gruyter · Berlin · New York 1981

Inhaltsverzeichnis

Einleitung	14
1. Kennzeichnung dynamischer Systeme und Modelle	18
1.1. Systeme und Modelle	18
1.2. Dynamische Modelle als Repräsentanten dynamischer Systeme 2	21
1.2.1. Metrisch dynamische Modelle	24
1.2.2. Metrisch dynamische zeitdiskrete äquidistante Modelle (MZÄ)	28
1.2.3. Strukturmerkmale dynamischer MZÄ-Modelle	3 1
1.3. Strukturgleichungstypen dynamischer MZÄ-Modelle	38
1.3.1. Hypothesengleichungen	38
A. Technologische und institutionelle Hypothesen sowie Verhaltenshypothesen	38
B. Parametrisch-singuläre, parametrisch-generelle, komparative und nichtkomparative Hypothesen	39
C. Kontrollierte und unkontrollierte, primäre und sekundäre Hypothesen	44
1.3.2. Definitionsgleichungen	47
1.4. Schaubildliche Modellierung dynamischer Systeme	54
1.4.1. Kausaldiagramme	56
1.4.2. Pfeil-, Block- und Signalflußdiagramme	61
1.4.3. System-Dynamics-Diagramme	67
1.5. Implikationen dynamischer MZÄ-Modelle	69
1.5.1. Zeitverlauf der endogenen Variablen	72
A. Deterministische Modelle	72
B. Stochastische Modelle	74
1.5.2. Stabilitätsverhalten	75
1.5.3. Retrodiktion endogener Variablen	83
1.5.4. Sensitivität eines Modells	87
1.5.5. Stochastische Implikationen	96
1.6. Methoden der Erschließung von Modellimplikationen	99
1.6.1. Deduktive Erschließung von Modellimplikationen	99
1.6.2. Pseudoinduktive Erschließung von Modellimplikationen	99
1.6.3. Simulation, Simulationsexperiment und Modellexperiment als Erschließungsmethoden von Modellimplikationen	101

A. Begriffliche Deutung der Terme 'Simulation','Simula- tionsexperiment','Modellexperiment' und ihre Beurtei- lung als Erschließungsmethode	102
B. Verwendbarkeit realexperimenteller Verfahren als Er- schließungsmethode von Modellimplikationen	104
a) Methoden der Planung und Auswertung von Realexpe- rimenten	104
b) Übertragbarkeit realexperimenteller Planungs- und Auswertungsmethoden auf Modellexperimente	106
1.7. Gewinnung und Überprüfung dynamischer Modelle	110
1.7.1. Gewinnung dynamischer Hypothesen	110
A. Gewinnung stochastischer Hypothesen	111
B. Gewinnung deterministischer Hypothesen	122
1.7.2. Überprüfung dynamischer Hypothesen	124
A. Voraussetzungen der empirischen Hypothesenüberprüfung	126
a) Forderung nach logischer Konsistenz	126
b) Forderung nach Eindeutigkeit des Variablenverlaufes	127
c) Forderung nach definitorischer Konsistenz	128
B. Überprüfung stochastischer Hypothesen	129
C. Überprüfung deterministischer Hypothesen	133
a) Grundprinzipien der Überprüfung deterministischer Hypothesen	133
b) Einzelfragen der Überprüfung deterministischer Hy- pothesen	139
ba) Hypothesenüberprüfung anhand von Retrodiktionen	139
bb) Hypothesenüberprüfung durch Konfrontation mit ge- nerellen Hypothesen	143
bc) Hypothesenüberprüfung durch subjektive Konsequen- zenbewertung	146
bd) Hypothesenüberprüfung bei Nichtbeobachtungsvaria- blen	151
α) Zwischenhypothesen in intersubjektiv nachprüf- baren Modellen	151
β) Zwischenhypothesen in Entscheidermodellen	157
2. Formen und Erschließungsmethoden dynamischer MZA-Modelle	164
2.1. Lineare und nichtlineare Modellformen	164
2.1.1. Lineare Modellformen	165
A. Lineare Modellformen mit zeitvariablen Koeffizienten	166

			•	
В.	Line	eare	e Modellformen mit zeitkonstanten Koeffizienten	168
	a) 2	Zeit	tpfadermittlung durch Funktionslösungen	169
	aa)	Fur	nktionslösung von Endgleichungen ersten Grades	173
		α)	Funktionslösung homogener Endgleichungen er-	
		,	sten Grades	173
		β)	Funktionslösung inhomogener Endgleichungen ersten Grades	175
	ab)	Fur	nktionslösung von Endgleichungen zweiten Grades	179
		α)	Funktionslösung homogener Endgleichungen zwei-	
			ten Grades	179
		aa)	Funktionslösung homogener Endgleichungen zweiten Grades mit ungleichen Wurzeln	179
		αβ)	Funktionslösung homogener Endgleichungen zwei- ten Grades mit gleichen Wurzeln	182
		αγ)	Numerische Beispiele von Funktionslösungen ho- mogener Endgleichungen zweiten Grades	183
		αδ)	Trigonometrische Form der Funktionslösung homo- gener Endgleichungen zweiten Grades mit konju- giert komplexen Wurzeln	187
		β)	Funktionslösung inhomogener Endgleichungen zweiten Grades	194
	ac)	Fur	nktionslösung von Endgleichungen n-ten Grades	198
	ь) і	Emp i	irische Kennzeichen linearer Systeme	199
	ba)	Übe	ergangsverhalten linearer Systeme	202
		α)	Allgemeine Kennzeichnung des Übergangsverhaltens	202
		β)	Stabilität als Spezialfall des Übergangsverhaltens	208
		γ)	Multiplikatoren als Maßzahlen des Übergangsverhaltens	210
		გ)	Koeffizientenkriterien des Übergangsverhaltens	214
	ьь)	Vei	rhaltensdiagramme linearer Systeme	216
	c) ł	Höhe	ere Analysemethoden linearer Systeme	221
	ca)	Ve	rwendung von Operatoren in linearen Systemen	221
	cb)		dgleichungsbestimmung anhand graphischer System- rstellungen	224
		α)	Endgleichungsbestimmung anhand von Blockdiagrammen	225
		β)	Endgleichungsbestimmung anhand von Signalflußdia- grammen	232
	cc)	Ana	alyse linearer Systeme anhand von Matrizen	237
			Grundbegriffe der Matrizenrechnung	237

		B) Endgleichungsbestimmung anhand von Polynommatrizen 2	244
		γ) Zustandsraumdarstellung linearer Systeme und ihre Analysemethoden	249
	2.1.2.	Nichtlineare Modellformen	257
	A. Be	griffliche Klärung und empirische Interpretation2	258
	B. An	alyse nichtlinearer Modelle	264
2.	.2. Offe	ne und geschlossene Modellformen	274
2.	3. Zyk1	ische und kaskadierende Modellformen	279
	2.3.1.	Begriffliche Klärung und empirische Interpretation 2	280
	A. Zy	klische und kaskadierende Hypothesen	280
	B. Se	quentielle Hypothesen	287
	2.3.2.	Beziehungen zwischen linear zyklischen und infinit sequentiellen Hypothesen	295
		erführung zyklischer in sequentielle Hypothesen 2	
		Gewichtsfunktion und Einheitsimpulsantwort	
	ь)	Ermittlung der Gewichtungsmatrix sequentieller Matrizenmodelle	302
	B. Üb th	verführung infinit sequentieller in zyklische Hypo-	
2.		rsive und interdependente Modellformen	
		Begriffliche Klärung und empirische Interpretation 3	
	2.4.2.	Analyse der Verknüpfungsstruktur rekursiver und interdependenter Modelle	
	A. St	rukturmatrizen rekursiver Modelle	325
	B. St	rukturmatrizen interdependenter Modelle	329
		mittlung standardisierter Strukturmatrizen von re- ersiven und interdependenten Modellen	332
		itpfadbestimmung in interdependenten Modellen	
		Zeitpfadbestimmung in linearen interdependenten Modellen	
	b)	Zeitpfadbestimmung in nichtlinearen interdepen- denten Modellen	343
2.		egbare, unzerlegbare und annähernd zerlegbare Mo-	348
		Begriffliche Klärung und empirische Interpretation	
	2.5.2.	Verknüpfungs- und Komplexitätsmaße dynamischer Modelle	
		Subsystemabspaltung in dynamischen Modellen	
	۷・フ・フ・	Subsystemasspartung in dynamischen modernen	ノロフ

2 .	.6. D	etei	rministische und stochastische Modellformen	375
	2.6.	1. [Deterministische Modellformen	376
	2.6.	2. 9	Stochastische Modellformen	377
	Α.	Beg	griffliche Klärung und empirische Interpretation	377
	В.	Dec	duktive Analyse stochastischer Modelle	378
		a)	Analyse eines stochastischen Modells der Lager- und Bestellpolitik	383
		ь)	Analyse eines stochastischen MA-Modells	386
	С.	Pse	eudoinduktive Analyse stochastischer Modelle	390
		a)	Grundlagen der Parameterschätzung stochastischer Modellimplikationen	390
		ь)	Varianzreduzierende Verfahren im Rahmen der Parameterschätzung stochastischer Modellimplikationen	395
	D.	Sub	bjektive Entscheidermodelle und stochastische Analyse	396
3.	,		Dynamics - ein Modellierungskonzept dynamischer Sy-	
_				
3.			au und Wirkungsweise der Modellelemente	
	-		Levelvariablen	
	-		Flußraten und Hilfsvariablen	
			Graphische Darstellung von System-Dynamics-Modellen	
			Exponentielle Bestands- und Informationsverzögerungen	
	Α.	Exp	oonentielle Bestandsverzögerungen	412
	В.	Ext	ponentielle Informationsverzögerungen	415
	3.1.	5	Tabellenfunktionen und sonstige Makrofunktionen	418
3 .			ackheuristik und Geschlossenheitsprinzip als Elemen- er System-Dynamics-Konzeption	425
	3.2.	1. 1	Feedbackheuristik des System-Dynamics-Konzeptes	426
	3.2.	2. (Geschlossenheitsprinzip und System Dynamics	430
	Α.	Sir	ngulär offene System-Dynamics-Ansätze	430
		a)	Kennzeichnung singulär offener System-Dynamics- Ansätze	430
		ь)	Zur Bestimmung von gleichgewichtigen Levelanfangswerten in singulär offenen System-Dynamics-Ansätzen	433
		ba)) Makrofunktionen in gleichgewichtigen Modellen	434
		bb)) Gleichgewichtsbestimmung von Modellen durch Simu-	
			lation	
	В	. G€	eschlossene System-Dynamics-Ansätze	440

3.3. Analysemethoden von System-Dynamics-Modellen
3.3.1. Sensitivitätsanalyse von System-Dynamics-Modellen 444
A. Sensitivitätsmaße und ihre Anwendung in System- Dynamics-Modellen445
B. Sensitivitätsanalysen bei einer Parametrisierung von Tabellenfunktionen458
C. Parameterstochastisierung und Sensitivität
D. Sensitivitätsuntersuchungen am Beispiel des Welt- modells von Meadows463
3.3.2. Retrodiktionsanalyse von System-Dynamics-Modellen 469
A. Grundlagen der Retrodiktion eines System-Dynamics-Modells 469
B. Durchführung einer Retrodiktion am Beispiel des Weltmo- dells von Forrester479
3.4. Die FOLR-Modellierung als Alternative zum System-Dynamics- Konzept
3.4.1. Die Infinitesimalprämisse des System-Dynamics-Konzeptes und ihre Ablösung durch die Diskretzeitprämisse 481
A. Infinitesimal- und Diskretzeitprämisse als alternative Elemente eines Modellierungsansatzes
B. Exponentielle Verweilzeithypothesen im Falle der Infi- nitesimal- und Diskretzeitprämisse
 a) Zur Definition der durchschnittlichen Verzögerung exponentieller Verzögerungen dritter Ordnung 490
b) Die Bestimmung der Parameter exponentieller Verweil- zeithypothesen bei Akzeptierung der Infinitesimal- und Diskretzeitprämisse496
ba) Parameterbestimmungen im Falle der Akzeptierung der Infinitesimalprämisse496
bb) Parameterbestimmung im Falle der Akzeptierung der Diskretzeitprämisse500
3.4.2. Die Verwerfung der generellen Informationslevelprämisse und ihre Konsequenzen
3.4.3. Die Verwerfung des Geschlossenheitsprinzips und ihre Konsequenzen
3.4.4. Die Verwerfung der statistischen Sonderstellung und ihre Konsequenzen516
3.4.5. Zum Status der FOLR-Modellierung
4. Rechnergestützte Systeme zur Entwicklung und Analyse dyna- mischer MZÄ-Modelle
4 1 Simulationssysteme für M7Ä-Modelle

4.1.1. Simulation mit DYNAMO 522	
A. Kennzeichen der DYNAMO-Sprache522	2
B. Formulierung allgemeiner dynamischer MZÄ-Modelle mit DYNAMO532	,
a) Rekursive Modelle532	
b) Simultane Modelle	
4.1.2. Simulation mit CSMP	
A. Kennzeichen von CSMP	
B. Formulierung von System-Dynamics-Ansätzen mit CSMP 541	
C. Formulierung allgemeiner dynamischer MZÄ-Modelle mit CSMP	
D. Vergleich zwischen DYNAMO und CSMP546	
4.1.3. Simulation mit FORTRAN	
A. Simulation won System-Dynamics-Modellen mit FORTRAN 548	
	2
a) Probleme der Anfangswertbestimmung in System-Dy- namics-Modellen548	8
b) Aufbau des FORTRAN-Programms553	3
c) Simulation eines im System-Dynamics-Konzept beschrie- benen Produktions- und Lagerhaltungssystems mit FORTRAN561	1
8. Simulation klassischer Differenzengleichungen mit FORTRAN565	5
.2. Schätz- und Analysesysteme für dynamische MZÄ-Modelle 567	
4.2.1. SIMPLAN	
4.2.2. EPL	
4.2.3. COMOS 568	8
4.2.4. TROLL	9
nhang	0
. Untersuchung der Sensitivität mit Rücksetzung anhand eines Fertigungsmodells (DYNAMO)	
Retrodiktionsvorspann für ein System-Dynamics-Modell (DYNAMO)582	
. Dreidimensionaler Suchalgorithmus zur Parameterbestimmung	
exponentieller Verweilzeithypothesen (FORTRAN)	4
. Makrofunktion DELATO (DYNAMO)587	7
. FORTRAN-Unterprogramme für eine FORTRAN-Version zur Dar-	_
stellung von System-Dynamics-Modellen	
iteraturverzeichnis	
Register	8