# Terramechanics

### Land Locomotion Mechanics

#### Tatsuro Muro

Department of Civil and Environmental Engineering Faculty of Engineering Ehime University Matsuyama, Japan

and

#### Jonathan O'Brien

School of Civil and Environmental Engineering University of New South Wales Sydney, Australia



| Technis <b>che Un</b> iv | ersität Darmstadt |
|--------------------------|-------------------|
| Fachgebiet Fa            | hrzeugtechnik     |
| Inv. Nr. :               | F 1600            |

A.A. BALKEMA PUBLISHERS LISSE/ABINGDON/EXTON (PA)/TOKYO

## Contents

L

| Preface                                                   | 1X |
|-----------------------------------------------------------|----|
| CHAPTER 1 INTRODUCTION                                    | 1  |
| 1.1 General                                               | 1  |
| 1.2 Mechanics of Soft Terrain                             | 2  |
| 1.2.1 Physical properties of soil                         | 3  |
| 1.2.2 Compressive stress and deformation characteristics  | 6  |
| 1.2.3 Shear stress and deformation characteristics        | 8  |
| 1.3 Mechanics of Snow Covered Terrain                     | 19 |
| 1.3.1 Physical properties of snow                         | 19 |
| 1.3.2 Compressive stress and deformation characteristics  | 22 |
| 1.3.3 Shear stress and deformation characteristics        | 26 |
| 1.4 Summary                                               | 29 |
| References                                                | 31 |
| Exercises                                                 | 33 |
| CHAPTER 2 RIGID WHEEL SYSTEMS                             | 35 |
| 2.1 At Rest                                               | 36 |
| 2.1.1 Bearing capacity of weak terrain                    | 36 |
| 2.1.2 Contact pressure distribution and amount of sinkage | 36 |
| 2.2 At Driving State                                      | 39 |
| 2.2.1 Amount of slippage                                  | 39 |
| 2.2.2 Soil deformation                                    | 40 |
| 2.2.3 Force balances                                      | 45 |
| 2.2.4 Driving force                                       | 47 |
| 2.2.5 Compaction resistance                               | 51 |
| 2.2.6 Effective driving force                             | 53 |
| 2.2.7 Energy equilibrium                                  | 54 |
| 2.3 At Braking State                                      | 55 |
| 2.3.1 Amount of slippage                                  | 55 |
| 2.3.2 Soil deformation                                    | 56 |
| 2.3.3 Force balances                                      | 59 |
| 2.3.4 Braking force                                       | 61 |
| 2.3.5 Compaction resistance                               | 65 |
| 2.3.6 Effective braking force                             | 67 |
| 2.3.7 Energy equilibrium                                  | 67 |
| 2.4 Simulation Analysis                                   | 68 |
| 2.4.1 Driving state                                       | 70 |
| 2.4.2 Braking state                                       | 74 |

vi Contents

| 2.5 Summary                                                                                  | 78           | 5.2.4 Comp.       |
|----------------------------------------------------------------------------------------------|--------------|-------------------|
| References                                                                                   | 80           | 5.2.5 Energ       |
| Exercises                                                                                    | 81           | 5.2.6 Effect      |
| CHAPTER 3 FLEXIBLE-TIRE WHEEL SYSTEMS                                                        | 83           | 5.3 Braking State |
| 3.1 Tire Structure                                                                           | 84           | 5.3.1 Amou        |
| 3.2 Static Mechanical Characteristics                                                        | 86           | 5.3.2 Force       |
|                                                                                              | 91           | 5.3.3 Drag        |
| 3.3 Dynamic Mechanical Properties<br>3.3.1 Hard terrain                                      | 91           | (1) N             |
| 3.3.2 Soft terrain                                                                           | 94           | (2) (             |
|                                                                                              | 109          | (3) F             |
| 3.4 Kinematic Equations of a Wheel                                                           | 112          | 5.3.4 Comp        |
| <ul><li>3.5 Cornering Characteristics</li><li>3.6 Distribution of Contact Pressure</li></ul> | 112          | (1) <b>F</b>      |
|                                                                                              | 119          | (2) F             |
| 3.7 Summary<br>References                                                                    | 119          | (3) F             |
| Exercises                                                                                    | 120          | (4) F             |
| Exercises                                                                                    | 120          | 5.3.5 Energ       |
| CHAPTER 4 TERRAIN-TRACK SYSTEM CONSTANTS                                                     | 123          | 5.3.6 Effect      |
| 4.1 Track Plate Loading Test                                                                 | 124          | 5.4 Experimenta   |
| 4.2 Track Plate Traction Test                                                                | 124          | 5.5 Analytical E  |
| 4.3 Some Experimental Results                                                                | 127          | 5.5.1 Paven       |
| 4.3.1 Effects of variation in grouser pitch-height ratio                                     | 127          | 5.5.2 Snow        |
| 4.3.2 Results for a decomposed granite sandy terrain                                         | 130          | 5.6 Summary       |
| 4.3.3 Studies on pavement road surfaces                                                      | 131          | References        |
| 4.3.4 Scale effects and the model-track-plate test                                           | 134          | Exercises         |
| 4.3.5 Snow covered terrain                                                                   | 144          |                   |
| 4.4 Summary                                                                                  | 145          | CHAPTER 6 L       |
| References                                                                                   | 146          | FLEXIBLE-TRA      |
| Exercises                                                                                    | 146          | 6.1 Force System  |
| TWO LOND                                                                                     | <b>T</b> • • | (1) E<br>(2) E    |
| CHAPTER 5 LAND LOCOMOTION MECHANICS FOR                                                      | 149          | (2) E             |
| A RIGID-TRACK VEHICLE                                                                        |              | 6.2 Flexible Defe |
| 5.1 Rest State Analysis                                                                      | 149          | 6.3 Simulation A  |
| 5.1.1 Bearing capacity of a terrain                                                          | 149          | 6.3.1 At dri      |
| 5.1.2 Distribution of contact pressures and amounts of sinkage                               | 150          | 6.3.2 At bra      |
| (1) For the case where $s_{f0} \ge H$ , $s_{r0} \ge H$                                       | 152          | 6.4 Theory of Sta |
| (2) For the case where $0 \le s_{f0} < H < s_{r0}$                                           | 153          | 6.4.1 Thrus       |
| (3) For the case where $s_{f0} > H > s_{r0} \ge 0$                                           | 154          | 6.4.2 Amou        |
| (4) For the case where $s_{f0} < 0 < H < s_{r0}$                                             | 155          | 6.4.3 Turnin      |
| (5) For the case where $s_{f0} > H > 0 > s_{r0}$                                             | 156          | 6.4.4 Flow        |
| 5.2 Driving State Analysis                                                                   | 158          | 6.5 Some Experi   |
| 5.2.1 Amount of vehicle slippage                                                             | 158          | 6.5.1 Durin       |
| 5.2.2 Force balance analysis                                                                 | 159          | 6.5.2 Durin       |
| 5.2.3 Thrust analysis                                                                        | 162          | 6.6 Analytical E  |
| (1) Main part of track belt                                                                  | 163          | 6.6.1 Silty       |
| (2) Contact part of front-idler                                                              | 165          | (1) 7             |
| (3) Contact part of rear sprocket                                                            | 166          | (2) \$            |
| (c) commer part of the provide                                                               |              | (3) 1             |

Care and the second second

CONTENTS vii 167 5.2.4 Compaction resistance 5.2.5 Energy equilibrium equation 170 171 5.2.6 Effective driving force 174 5.3 Braking State Analysis 174 5.3.1 Amount of vehicle slippage 175 5.3.2 Force balance analysis 5.3.3 Drag 176 176 (1) Main part of track belt 180 (2) Contact part of the front-idler 181 (3) Part of rear sprocket 5.3.4 Compaction resistance 182 (1) For the case where  $0 \ge s_{f0i} \le s_{r0i}$ 182 (2) For the case where  $s_{f0i} > s_{r0i} > 0$ 183 183 (3) For the case where  $s_{f0i} < 0 < H < s_{r0i}$ 183 (4) For the case where  $s_{f0i} > H > 0 > s_{r0i}$ 5.3.5 Energy equilibrium analysis 183 184 5.3.6 Effective braking force 5.4 Experimental Validation 187 197 5.5 Analytical Example 5.5.1 Pavement road 197 5.5.2 Snow covered terrain 202 204 5.6 Summary 205 References 206 Exercises 209 **CHAPTER 6 LAND LOCOMOTION MECHANICS OF** FLEXIBLE-TRACK VEHICLES 209 6.1 Force System and Energy Equilibrium Analysis 212 (1) During driving action 212 (2) During braking action 6.2 Flexible Deformation of a Track Belt 212 6.3 Simulation Analysis 215 218 6.3.1 At driving state 221 6.3.2 At braking state 224 6.4 Theory of Steering Motion 228 6.4.1 Thrust and steering ratio 6.4.2 Amount of slippage in turning motion 229 6.4.3 Turning resistance moment 231 232 6.4.4 Flow chart 6.5 Some Experimental Study Results 235 235 6.5.1 During self-propelling operation 6.5.2 During tractive operations 238 238 6.6 Analytical Example 6.6.1 Silty loam terrain 239 (1) Trafficability of a bulldozer running on soft terrain 239 (2) Size effect of vehicle 246 249 (3) Effect of initial track belt tension

10

viii Contents

|     | 6.6.2 | Decomposed granite sandy terrain | 254 |
|-----|-------|----------------------------------|-----|
|     |       | (1) At driving state             | 255 |
|     |       | (2) At braking state             | 259 |
|     | 6.6.3 | Snow covered terrain             | 261 |
|     |       | (1) At driving state             | 262 |
|     |       | (2) At braking state             | 266 |
| 6.7 |       |                                  | 269 |
|     | Refer | ences                            | 269 |
|     | Exerc | ises                             | 271 |
| INI | DEX   |                                  | 273 |

Terramechanics is a It concerns itself wi of mobile plant. T terrain interaction r agricultural vehicle of flotation, traffica

Preface

terrains. Within ter machine to do effec on the physical pro characteristics of t who are involved ir mechanical propert in the construction employed by the or by the machinery u and land user grou introduce terramec developing the wor various kinds of so

The author also for working syster engineers engaged ogy may be empl develop sound prin of historical backgr motion mechanics period of 20 years works entitled 'Th and 'Introduction t be the original 'bib to the performance approach to the su associated fields su domains involving quence, modern la mathematical and 1 In relation to thi text has been adopt