Chemical Reactor
Design and Operation

K. R. WESTER TERP
W. P. M. VAN SWAAI J
A. A. C. M. BEENACKERS
Chemical Reaction Engineering Laboratories,
Twente University of Technology, Enschede, The Netherlands
Groningen University, Groningen, The Netherlands

JOHN WILEY & SONS
Chichester · New York · Brisbane · Toronto · Singapore
Contents

Preface to the First Edition .. v
Preface to the Second Edition .. ix
Preface to the Student Edition ... xi
List of Symbols .. xxiii

CHAPTER I Fundamentals of chemical reactor calculations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I.2</td>
<td>The material, energy and economic balance</td>
<td>3</td>
</tr>
<tr>
<td>—</td>
<td>Material balance</td>
<td>3</td>
</tr>
<tr>
<td>—</td>
<td>Energy balance</td>
<td>4</td>
</tr>
<tr>
<td>—</td>
<td>Economic balance</td>
<td>5</td>
</tr>
<tr>
<td>I.3</td>
<td>Thermodynamic data: heat of reaction and chemical equilibrium</td>
<td>6</td>
</tr>
<tr>
<td>—</td>
<td>Heat of reaction</td>
<td>6</td>
</tr>
<tr>
<td>—</td>
<td>Chemical equilibrium</td>
<td>10</td>
</tr>
<tr>
<td>I.4</td>
<td>Conversion rate, chemical reaction rate and chemical reaction rate equations</td>
<td>14</td>
</tr>
<tr>
<td>—</td>
<td>Influence of temperature on kinetics</td>
<td>16</td>
</tr>
<tr>
<td>—</td>
<td>Influence of concentration on kinetics</td>
<td>19</td>
</tr>
<tr>
<td>I.5</td>
<td>The degree of conversion</td>
<td>24</td>
</tr>
<tr>
<td>—</td>
<td>Relation between conversion and concentration expressions</td>
<td>26</td>
</tr>
<tr>
<td>I.6</td>
<td>Selectivity and yield</td>
<td>29</td>
</tr>
<tr>
<td>—</td>
<td>Selectivity and yield in a reactor section with recycle of non-converted reactant</td>
<td>30</td>
</tr>
<tr>
<td>I.7</td>
<td>Classification of chemical reactors</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

CHAPTER II Model reactors: single reactions, isothermal single phase reactor calculations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>The well-mixed batch reactor</td>
<td>39</td>
</tr>
<tr>
<td>II.2</td>
<td>The continuously operated ideal tubular reactor</td>
<td>43</td>
</tr>
<tr>
<td>II.3</td>
<td>The continuously operated ideal tank reactor</td>
<td>49</td>
</tr>
</tbody>
</table>
IV.3 Residence time distribution in a continuous plug flow and in a continuous ideally stirred tank reactor

IV.4 Models for intermediate mixing
—Model of a cascade of N equal ideally mixed tanks
—The axially dispersed plug flow model

IV.5 Conversion in reactors with intermediate mixing

IV.6 Some data on the longitudinal dispersion in continuous flow systems
—Flow through empty tubes
—Packed beds
—Fluidized beds
—Mixing in gas-liquid reactors

References

CHAPTER V Influence of micromixing on chemical reactions

V.1 Nature of the micromixing phenomena
—Macro or gross overall mixing as characterized by the residence time distribution
—The state of aggregation of the reacting fluid
—The earliness of the mixing

V.2 Boundaries to micromixing phenomena
—The model tubular and tank reactors
—Boundaries for micromixing for reactors with arbitrary RTDs

V.3 Intermediate degree of micromixing in continuous stirred tank reactors
—Formal models
—Agglomeration models
—Model for micromixing via exchange of mass between agglomerates and their 'average' environment, the IEM model

V.4 Experimental results on micromixing in stirred vessels

V.5 Concluding remarks on micromixing

References

CHAPTER VI The role of the heat effect in model reactors

VI.1 The energy balance and heat of reaction
VI.2 The well-mixed batch reactor
—Batch versus semi-batch operation
VI.3 The tubular reactor with external heat exchange
—Maximum temperature with exothermic reactions; parametric sensitivity
VI.4 The continuous tank reactor with heat exchange
VI.5 Autothermal reactor operation
—The tank reactor
—An adiabatic tubular reactor with heat exchange between reactants and products .. 320
—A multi-tube reactor with internal heat exchange between the reaction mixture and the feed 323
—Determination of safe operating conditions 327
VI.6 Maximum permissible reaction temperatures 331
VI.7 The dynamic behaviour of model reactors 339
—The autothermal tank reactor 340
—Tubular reactor .. 354
References .. 355

CHAPTER VII Multiphase reactors, single reactions 357
VII.1 The role of mass transfer 357
VII.2 A qualitative discussion on mass transfer with homogeneous reaction ... 359
—Concentration distribution in the reaction phase 360
VII.3 General material balance for mass transfer with reaction .. 362
VII.4 Mass transfer without reaction 363
—Stagnant film model ... 367
—Penetration models of Higbie and Danckwerts 369
VII.5 Mass transfer with homogeneous irreversible first order reaction ... 371
—Penetration models ... 371
—Stagnant film model ... 377
—General conclusion on mass transfer with homogeneous irreversible first order reaction 380
—Applications ... 383
VII.6 Mass transfer with homogeneous irreversible reaction of complex kinetics 390
VII.7 Mass transfer with homogeneous irreversible reaction of order (1,1) with $Al \gg 1$ 393
—Slow reaction .. 395
—Fast reaction ... 396
—Instantaneous reaction .. 398
—General approximated solution 400
VII.8 Mass transfer with irreversible homogeneous reaction of arbitrary kinetics with $Al \gg 1$ 409
VII.9 Mass transfer with irreversible reaction of order (1,1) for a small Hinterland coefficient 412
VII.10 Mass transfer with reversible homogeneous reactions ... 412
VII.11 Reaction in a fluid–fluid system with simultaneous mass transfer to the non-reaction phase (desorption) ... 420
VII.12 The influence of mass transfer on heterogeneous reactions .. 424
—Heterogeneous reaction at an external surface 426
—Reactions in porous solids 433
VII.13 General criterion for absence of mass transport limitation ... 448
VII.14 Heat effects in mass transfer with reaction 452
—Mass transfer with reaction in series 452
—Mass transfer with simultaneous reaction in a gas-liquid system 454
—Mass transfer with simultaneous reaction in a porous pellet 455

VII.15 Model reactors for studying mass transfer with chemical reaction in heterogeneous systems 458
—Model reactors for gas-liquid reactions 459
—Model reactors for liquid-liquid reactions 466
—Model reactors for fluid-solid reactions 466

VII.16 Measurement techniques for mass transfer coefficients and specific contact areas in multi-phase reactors 471
—Measurement of the specific contact area \(a \) 472
—Measurement of the product \(k_L a \) 474
—Measurement of the product \(k_G a \) 475
—Measurement of mass transfer coefficients \(k_L, k_G \) 476

VII.17 Numerical values of mass transfer coefficients and specific contact areas in multi-phase reactors 479
—Fluid-solid reactors 479
—Fluid-fluid (-solid) reactors 487

References 490

CHAPTER VIII Multi-phase reactors, multiple reactions 495

VIII.1 Introduction 495

VIII.2 Simultaneous mass transfer of two reactants \(A \) and \(A' \) with independent parallel reactions \(A \rightarrow P \) and \(A' \rightarrow X \) (Type I Selectivity) 497
—Mass transfer and reaction in series 498
—Mass transfer and reaction in parallel 500

VIII.3 Mass transfer of one reactant \((A) \) followed by two dependent parallel reactions
\[
A(+ B) \rightarrow P \quad A(+ B, B') \rightarrow X
\]
(Type II Selectivity) 503
—Mass transfer and reaction in series 504
—Mass transfer and reaction in parallel 506

VIII.4 Simultaneous mass transfer of two reactants \((A \) and \(A' \)) followed by dependent parallel reactions with a third reactant:
\[
A + B \rightarrow P, \quad A' + B \rightarrow X
\]
—Complete mass transfer limitation in non-reaction phase 522
—One reactant mass transfer limited in non-reaction phase 522
—One reaction instantaneous 526
—Both reactions instantaneous 531
—No diffusion limitation of reactant originally present in reaction phase 531
—More complex systems 531

VIII.5 Simultaneous mass transfer of two reactants \((A \) and \(A' \)) which
react with each other.

VIII.6 Mass transfer with consecutive reactions \(A \rightarrow P \rightarrow X \) (Type III Selectivity).

—Mass transfer and reaction in series.
—Mass transfer and reaction in parallel.

VIII.7 Mass transfer with mixed consecutive parallel reactions.
—The system: \(A(1) \rightarrow A(2); A(2) + B(2) \rightarrow P(2); P(2) + B(2) \rightarrow X(2) \).
—The system: \(A(1) \rightarrow A(2); A(2) + B(2) \rightarrow P(2); A(2) + P(2) \rightarrow X(2) \).
—Complex systems.

References.

CHAPTER IX Heat effects in multi-phase reactors

IX.1 Gas—liquid reactors.
—General.
—Column reactors.
—Bubble column reactors.
—Agitated gas—liquid reactors.

IX.2 Gas—solid reactors.
—Single particle behaviour.
—Catalytic gas—solid reactors.
—The moving bed gas—solid reactor.
—Thermal stability and dynamic behaviour of gas—solid reactors.

IX.3 Gas—liquid—solid reactors.

References.

CHAPTER X The optimization of chemical reactors.

X.1 The object and means of optimization.
—The objective function.
—The optimization variables.
—Relation between technical and economic optima.

X.2 Optimization by means of temperature.
—The optimization of exothermic equilibrium reactions.
—Temperature optimization with complex reaction systems.

X.3 Some mathematical methods of optimization.
—Geometric programming.
—The Lagrange multiplier technique.
—Numerical search routines.
—Dynamic programming.
—Pontryagin's maximum principle.

References.

Author Index.

Subject Index.