HEURISTICS

Intelligent Search Strategies for Computer Problem Solving

Judea Pearl

Department of Computer Science
University of California
Los Angeles, California

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts • Menlo Park, California
London • Amsterdam • Don Mills, Ontario • Sydney
PART I
Problem-Solving Strategies and the Nature of Heuristic Information

1. Heuristics and Problem Representations 3
 1.1 Typical Uses of Heuristics in Problem Solving 3
 1.1.1 The 8-Queens Problem 4 / 1.1.2 The 8-Puzzle 6 / 1.1.3 The Road Map Problem 9 / 1.1.4 The Traveling Salesman Problem (TSP) 10 / 1.1.5 The Counterfeit Coin Problem 12
 1.2 Search Spaces and Problem Representations 14
 1.2.1 Optimizing, Satisficing, and Semi-Optimizing Tasks 14 / 1.2.2 Systematic Search and the Split-and-Prune Paradigm 15 / 1.2.3 State-Space Representation 20 / 1.2.4 Problem-Reduction Representations and AND/OR Graphs 21 / 1.2.5 Selecting a Representation 26
 1.3 Bibliographical and Historical Remarks 31
 Exercises 32

2. Basic Heuristic-Search Procedures 33
 2.1 Hill-Climbing: An Irrevocable Strategy 35
 2.2 Uninformed Systematic Search: Tentative Control Strategies 36
 2.2.1 Depth-First and Backtracking: LIFO Search Strategies 36 / 2.2.2 Breadth-First: A FIFO Search Strategy 42 / 2.2.3 Uninformed Search of AND/OR Graphs 44
 2.3 Informed, Best-First Search: A Way of Using Heuristic Information 46
 2.3.1 A Basic Best-First (BF) Strategy for State-Space Search 48 / 2.3.2 A General Best-First Strategy for AND/OR Graphs (GBF) 49
 2.4 Specialized Best-First Algorithms: Z*, A*, AO, and AO* 56
 2.4.1 Why Restrict the Evaluation Functions? 56 / 2.4.2 Recursive Weight Functions 57 / 2.4.3 Identifying G₀, The Most Promising Solution-Base Graph 59 / 2.4.4 Specialized Best-First Strategies 61
2.5 Hybrid Strategies 65
2.5.1 BF-BT Combinations 66 / 2.5.2 Introducing Irrevocable Decisions 68
2.6 Bibliographical and Historical Remarks 69
Exercises 71

3. Formal Properties of Heuristic Methods 73
3.1 $A^* -$ Optimal Search for an Optimal Solution 75
3.1.1 Properties of f^* 75 / 3.1.2 Termination and Completeness 76 / 3.1.3 Admissibility - A Guarantee for an Optimal Solution 77 / 3.1.4 Comparing the Pruning Power of Several Heuristics 79 / 3.1.5 Monotone (Consistent) Heuristics 82
3.2 Relaxing the Optimality Requirement 86
3.2.1 Adjusting the Weights of g and h 86 / 3.2.2 Two ε-Admissible Speedup Versions of A^* 88 / 3.2.3 $R_g^* -$ A Limited Risk Algorithm Using Information about the Uncertainty of h 90 / 3.2.4 $R_{g,\varepsilon}^* -$ A Speedup Version of R_g^* 97
3.3 Some Extensions to Nonadditive Evaluation Functions (BF^* and GBF^*) 99
3.3.1 Notation and Preliminaries 100 / 3.3.2 Algorithmic Properties of Best-First Search BF^* 103
3.4 Bibliographical and Historical Remarks 110
Exercises 112

4. Heuristics Viewed as Information Provided by Simplified Models 113
4.1 The Use of Relaxed Models 113
4.1.1 Where Do These Heuristics Come From? 113 / 4.1.2 Consistency of Relaxation-Based Heuristics 115 / 4.1.3 Overconstrained, Analogue, and Other Types of Auxiliary Models 116
4.2 Mechanical Generation of Admissible Heuristics 118
4.2.1 Systematic Relaxation 118 / 4.2.2 Can a Program Tell an Easy Problem When It Sees One? 121 / 4.2.3 Summary 123
4.3 Probability-Based Heuristics 124
4.3.1 Heuristics Based on the Most Likely Outcome 125 / 4.3.2 Heuristics Based on Sampling 126 / 4.3.3 Probability-Based Heuristics in the Service of Semi-Optimization Problems 128
4.4 Bibliographical and Historical Remarks 131
Exercises 133

PART II Performance Analysis of Heuristic Methods

5. Abstract Models for Quantitative Performance Analysis 137
5.1 Mathematical Performance Analysis, or Test Tubes versus Fruit Flies in the Design of Gothic Cathedrals 137
Contents

5.2 Example 1: Finding a Shortest Path in a Regular Lattice with Air-Distance Heuristics 140
5.3 Example 2: Finding a Shortest Path in a Road-Map with Randomly Distributed Cities 146
5.4 Example 3: Searching for an Optimal Path in a Tree with Random Costs 150
 5.4.1 Notation and Preliminaries 150 / 5.4.2 Summary of Results 153 / 5.4.3 Branching Processes and the Proofs of Theorems 1-6 154 / 5.4.4 Conclusions 162
5.5 Bibliographical and Historical Remarks 163
Exercises 164
Appendix 5-A: Basic Properties of Branching Processes 165
Appendix 5-B: The Expected Size of an Extinct Family 166
Appendix 5-C: Proof of Theorem 2 167

6. Complexity versus Precision of Admissible Heuristics 169
 6.1 Heuristics Viewed as Noisy Information Sources 169
 6.1.1 Simplified Models as Sources of Noisy Signals 169 /
 6.1.2 A Probabilistic Model for Performance Analysis 171 /
 6.1.3 A Formula for the Mean Complexity of A* 173
 6.2 Stochastic Dominance for Random Admissible Heuristics 176
 6.3 The Mean Complexity of A* under Distance-Dependent Errors 179
 6.3.1 The Average Complexity under Proportional Errors 179 /
 6.3.2 The Average Complexity under General Distance-Dependent Errors 183
 6.4 Comparison to Backtracking and the Effect of Multiple Goals 189
 6.4.1 The Mean Complexity of Informed Backtracking 190 /
 6.4.2 The Effect of Multiple Goals 191
Exercises 193

7. Searching with Nonadmissible Heuristics 194
 7.1 Conditions for Node Expansion 194
 7.2 When Is One Heuristic Better Than Another If Overestimations Are Possible? 199
 7.3 How to Improve a Given Heuristic 202
 7.3.1 The Effect of Weighting g and h 202 / 7.3.2 How to Combine Information from Several Heuristic Sources 209 /
 7.3.3 When Is It Safe to Use $f = h$ or, Who's Afraid of $w = 1$? 210
Exercises 213
Appendix 7-A: Proof of Lemma 2 214
Appendix 7-B: Proof of Theorem 1 (The Pessimistic Substitution Principles) 216
PART III
Game-Playing Programs

8. Strategies and Models for Game-Playing Programs 221
8.1 Solving and Evaluating Games 222
 8.1.1 Game Trees and Game-Playing Strategies 222
 8.1.2 Bounded Look-Ahead and the Use of Evaluation Functions 226
 8.1.3 MIN-MAX versus NEG-MAX Notations 228
8.2 Basic Game-Searching Strategies 229
 8.2.1 Exhaustive Minimaxing and the Potential for Pruning 229
 8.2.2 The α-β Pruning Procedure: A Backtracking Strategy 231
 8.2.3 SSS*—A Best-First Search for an Optimal Playing Strategy 240
 8.2.4 SCOUT—A Cautious Test-Before-Evaluate Strategy 246
8.3 A Standard Probabilistic Model for Studying the Performance of Game-Searching Strategies 251
 8.3.1 The Probability of Winning a Standard Game with Random Win Positions 251
 8.3.2 Game Trees with an Arbitrary Distribution of Terminal Values 254
 8.3.3 The Mean Complexity of Solving a Standard (d,b,P₀)-game 259
 8.3.4 The Mean Complexity of Testing and Evaluating Multivalued Game Trees 268
8.4 Recreational Diversions 270
 8.4.1 The Board-Splitting Game—A Physical Embodiment of the Standard Game Tree 270
 8.4.2 Other Applications of the Minimax Convergence Theorem 273
 8.4.3 Games as Mazes with Hidden Paths: A Useful Metaphor 277
8.5 Bibliographical and Historical Remarks 285
Exercises 287

9. Performance Analysis for Game-Searching Strategies 288
9.1 The Expected Performance of SCOUT 289
 9.1.1 Games with Continuous Terminal Values 289
 9.1.2 Games with Discrete Terminal Values 292
9.2 The Expected Performance of α-β 293
 9.2.1 Historical Background 293
 9.2.2 An Integral Formula for Iα-β (d,b) 295
 9.2.3 The Branching Factor of α-β and Its Optimality 296
 9.2.4 How Powerful Is the α-β Pruning? 298
9.3 The Expected Performance of SSS* 300
 9.3.1 A Necessary and Sufficient Condition for Node Examination 300
 9.3.2 The Probability of Examining a Terminal Node 301
 9.3.3 The Expected Number of Terminal Nodes Examined by SSS* 303
 9.3.4 The Branching Factor of SSS* 304
 9.3.5 Numerical Comparison of the Performances of α-β, SSS*, and SCOUT 300
9.4 The Benefit of Successor Ordering 310
9.5 Games with Random Number of Moves 318
 9.5.1 The Distribution of the Value of the Game 318 /
 9.5.2 Performance Analysis 322 / 9.5.3 Ordering Successors by
 Branching Degrees 324
9.6 Bibliographical and Historical Remarks 325
Exercises 326
Appendix 9-A: Proof of Theorem 1 327
Appendix 9-B: Proof of Theorem 6 329

10. Decision Quality in Game Searching 332
10.1 Error Propagation through Minimaxing 333
 10.1.1 Error-Propagation for Bi-Valued Estimates and Binary
 Trees 333 / 10.1.2 Extensions to Multivalued Estimates and
 b-ary Trees 337 / 10.1.3 Limit-Points of (α, β) 340 /
 10.1.4 The Effect of Searching Deeper 346
10.2 When Is Look-Ahead Beneficial? 347
 10.2.1 Improved Visibility 347 / 10.2.2 The Effect of
 Dependencies 348 / 10.2.3 The Avoidance of Traps 350 /
 10.2.4 Playing to Win versus Playing Correctly 357
Exercises 361

Bibliography 363

Glossary of Notation 371

Author Index 375

Subject Index 377