Hans Lüth

Surfaces and Interfaces of Solid Materials

Third Edition

With 359 Figures and 12 Tables

Springer

Contents

1.	Surfa	ce ai	nd Interface Physics: Its Definition and Importance	1		
	Panel	I:	Ultrahigh Vacuum (UHV) Technology	6		
	Panel	II:	Basics of Particle Optics and Spectroscopy	19		
	Proble	ems	· · · · · · · · · · · · · · · · · · ·	33		
2	Prenz	iratio	on of Well-Defined Surfaces and Interfaces	35		
	2.1	Why	vis Ultrahigh Vacuum Used?	35		
	$\frac{2.1}{2.2}$	Clea	vage in UHV	37		
	2.3	Ion 1	Rombardment and Annealing	41		
	2.4	Evar	poration and Molecular Beam Epitaxy (MBE)	43		
	2.4	Enit	axy by Means of Chemical Reactions	56		
	Panel	III.	Auger Electron Spectroscopy (AES)	62		
	Panel	IV.	Secondary Ion Mass Spectroscopy (SIMS)	69		
	Proble	eme		79		
	1 1000	CIIIS		1)		
3.	Morp	holo	gy and Structure of Surfaces and Interfaces	81		
>	3.1	Surf	ace Tension and Macroscopic Shape	81		
7	3.2	Rela	xation, Reconstruction, and Defects	87		
->	3.3	Two	-Dimensional Lattices, Superstructure,			
		and	Reciprocal Space	94		
		3.3.	1 Surface Lattices and Superstructures	94		
		3.3.2	2 2D Reciprocal Lattice	97		
	3.4	Stru	ctural Models of Solid/Solid Interfaces	99		
	3.5	Nuc	leation and Growth of Thin Films	105		
		3.5.	1 Modes of Film Growth	105		
		3.5.2	2 "Capillary Model" of Nucleation	109		
	3.6	Film	-Growth Studies:			
		Exp	erimental Methods and Some Results	113		
	Panel	V:	Scanning Electron Microscopy (SEM)			
			and Microprobe Techniques	127		
)	Panel	VI:	Scanning Tunneling Microscopy (STM)	134		
	Panel	VII:	Surface Extended X-Ray Absorption Fine			
			Structure (SEXAFS)	145		
	Proble	ems	· · · · · · · · · · · · · · · · · · ·	153		

IX

T			
`4 .	Scatt	ering from Surfaces	155
	4.1	Kinematic Theory of Surface Scattering	156
	4.2	The Kinematic Theory	
		of Low-Energy Electron Diffraction (LEED)	162
	4.3	What Can We Learn from Inspection of a LEED Pattern?	165
	4.4	Dynamic LEED Theory, and Structure Analysis	171
		4.4.1 Matching Formalism	172
		4.4.2 Multiple-Scattering Formalism	175
		4.4.3 Structure Analysis	176
	4.5	Kinematics of an Inelastic Surface Scattering Experiment	178
	4.6	Dielectric Theory of Inelastic Electron Scattering	182
		4.6.1 Bulk Scattering	183
		4.6.2 Surface Scattering	187
	4.7	Dielectric Scattering on a Thin Surface Layer	195
	4.8	Some Experimental Examples of Inelastic Scattering	
		of Low-Energy Electrons at Surfaces	201
	4.9	The Classical Limit of Particle Scattering	207
	4.10	Conservation Laws for Atomic Collisions:	
		Chemical Surface Analysis	211
	4.11	Rutherford BackScattering (RBS):	
		"Channeling and Blocking"	215
	Panel	VIII: Low-Energy Electron Diffraction (LEED) and	
		Reflection High-Energy Electron Diffraction (RHEED)	227
	Panel	IX: Electron Energy Loss Spectroscopy (EELS)	237
	Probl	ems	245
5.	Surfa	ace Phonons	247
	5.1	The Existence of "Surface" Lattice Vibrations	
		on a Linear Chain	248
	5.2	Extension to a Three-Dimensional Solid with a Surface	253
	5.3	Rayleigh Waves	257
	5.4	The Use of Rayleigh Waves as High Frequency Filters	260
	5.5	Surface-Phonon (Plasmon) Polaritons	262
	5.6	Dispersion Curves from Experiment	
		and from Realistic Calculations	273
	Pane	X: Atom and Molecular Beam Scattering	279
	Probl	lems	287
6.	Eleci	tronic Surface States	289
~>	6.1	Surface States for a Semi-Infinite Chain	
		in the Nearly-Free Electron Model	290
	6.2	Surface States of a 3D Crystal and Their Charging Character	296
		6.2.1 Intrinsic Surface States	296

		6.2.2 Extrinsic Surface States	299
	6.3	Aspects of Photoemission Theory	300
		6.3.1 General Description	300
		6.3.2 Angle-Integrated Photoemission	305
		6.3.3 Bulk- and Surface-State Emission	306
		6.3.4 Symmetry of Initial States and Selection Rules	310
		6.3.5 Many-Body Aspects	311
	6.4	Some Surface-State Band Structures for Metals	315
		6.4.1 s- and p-like Surface States	316
		6.4.2 d-like Surface States	320
		6.4.3 Empty and Image-Potential Surface States	324
	6.5	Surface States on Semiconductors	328
		6.5.1 Elemental Semiconductors	329
		6.5.2 III-V Compound Semiconductors	338
		6.5.3 II-VI Compound Semiconductors	344
	Panel	XI: Photoemission and Inverse Photoemission	348
	Proble	ems	357
7	Snace	Charge Lavers at Semiconductor Interfaces	350
1.	7 1	Origin and Classification of Space-Charge Layers	350
	7.1	The Schottky Depletion Space-Charge Layer	365
	73	Weak Space-Charge Lavers	368
	74	Space-Charge Layers on Highly Degenerate Semiconductors	370
	75	The General Case of a Space-Charge Laver	372
	7.6	Quantized Accumulation and Inversion Layers	376
	7.7	Some Particular Interfaces and Their Surface Potentials	381
	7.8	The Silicon MOS Field-Effect Transistor	391
	7.9	Some Experimental Results on Narrow Inversion	
		and Accumulation Layers	395
	7.10	Magnetoconductance of a 2D Electron Gas:	
		The Quantum Hall Effect	399
	7.11	Two-Dimensional Plasmons	405
	Panel	XII: Optical Surface Techniques	408
	Proble	ems	421
8.	Meta	l-Semiconductor Junctions,	400
		Concercia Driver in the Concercia Structures	423
	ð.1	of Solid Solid Interfaces	423
, ,	on	or sona-sona interfaces	
-7	0.2	et the Motel Semiconductor Interface	121
	0 2	At the inicial-Semiconductor interface	431
	0.3	virtual induced Gap States (VIGS)	110
		at the semiconductor Helerointerface	440

.

	8.4	Structure- and Chemistry-Dependent Models		
		of Interface States		
	8.5	The Silicon-Silicide Interface		
	8.6	Some Applications of Metal-Semiconductor Junctions		
		and Semiconductor Heterostructures		
		8.6.1 Schottky Barriers	457	
		8.6.2 Semiconductor Heterojunctions		
		and Modulation Doping	460	
		8.6.3 The High Electron Mobility Transistor (HEMT)	466	
	8.7	Quantum Effects in 2D Electron Gases		
	at Semiconductor Interfaces		469	
	Panel XIII: Electrical Measurements of Schottky-Barrier Heights			
	and Band Offsets			
	Probl	ems	487	
•				
9.	Adso	orption on Solid Surfaces	489	
	9.1	Physisorption	489	
	9.2	Chemisorption	493	
	9.3	Work-Function Changes Induced by Adsorbates	499	
	9.4	Two-Dimensional Phase Transitions in Adsorbate Layers	505	
	9.5	Adsorption Kinetics	512	
	Panel	XIV: Desorption Techniques	520	
	Panel	XV: Kelvin-Probe and Photoemission Measurements		
		for the Study of Work-Function Changes		
		and Semiconductor Interfaces	529	
	Probl	ems	537	
References				
_				
Subject Index				