FATIGUE AS A DESIGN CRITERION

Terance V. Duggan and James Byrne

Department of Mechanical Engineering and Naval Architecture, Portsmouth Polytechnic

Μ

Technische Hochschule Darmstadt Fachbereich Mechanik Bibliothek Inv.-Nr. BM 1/80

Contents

Prej	vii		
Not	ix		
1.	Fact	. 1	
	1.1	Introduction	1
	1.2	High Cycle and Low Cycle Fatigue	2
	1.3	Designing Against High Cycle Fatigue	5
	1.4	Effect of Type of Loading	7
	1.5	Effect of Size and Stress Gradient	8
	1.6	Surface Finish and Directional Properties	10
	1.7	Effect of Stress Concentration	12
	1.8	Effect of Mean Stress	15
	1.9	Environmental Factors	19
	1.10	Concluding Remarks	22
:		References	22
2.	Fati	26	
	2.1	Introduction	26
	2.2	General Case of Three-Dimensional Stresses	26
	2.3	Static Theories of Failure	33
	2.4	Combined Fluctuating Stresses	37
	2.5	Methodical Procedure	38
	2.6	Combined Creep and Fatigue	40
	2.7	Concluding Remarks	44
		References	45
3.	Cycl	46	
	3.1	Introduction	46
	3.2	Formation of Fatigue Cracks	46
	3.3	Low Cycle Failure	47
	3.4	High Strain Low Cycle Fatigue	49
	3.5	Presentation of LCF Data	51
	3.6	Deformation Type Failure	59
	3.7	Failure Mechanisms in Practice	. 61
	3.8	Concluding Remarks	63
		References	63

•

.

CON	FENTS
-----	--------------

4.	Meta	llurgical Aspects of Fatigue	65
	4.1	Introduction	65
	4.2	The Reality of Metal Microstructure	. 65
	4.3	Formation and Propagation of Fatigue Cracks	67
	4.4	Fracture Mechanisms	72
	4.5	The Fatigue Limit	75
	4.6	Surface Condition and Treatment	77
	4.7	Environmental Effects	80
	4.8	Fretting Fatigue	82
	4.9	Elevated Temperature Fatigue	82
	4.10	Fatigue Failures	84
	4.11	Concluding Remarks	91
		References	92
5.	Asses	sment of Crack Formation Life	94
	5.1	Introduction	94
	5.2	Determination of Stress and Strain at a Concentration	94
	5.3	Predicting Crack Formation Life	103
	5.4	Factors Influencing High Strain Fatigue	107
	5.5	Concluding Remarks	109
		References	109
6.	Fract	112	
	6.1	Introduction	112
	6.2	Griffith Theory	113
	6.3	Linear Elastic Fracture Mechanics	116
	6.4	Critical Flaw Size in Fatigue	124
	6.5	Fatigue Crack Propagation	125
	6.6	Factors Influencing Crack Propagation Rate	131
	6.7	Assessing Crack Propagation Life	134
	6.8	Fatigue Crack Propagation Testing and Analysis	136
	6.9	Concluding Remarks	144
		References	144
	Appendix: Tutorial Examples		148
	Auth	or Index	159
	Subje	ect Index	161

vi

: