Contents

1 Fundamentals of Plasticity

- **LEHMANN, Th.:** Some remarks on the phenomenological description of anisotropic behaviour of elastic-plastic solids ...3
- **BEDNARCZYK, H.; SANSOUR, C.:** On the choice of integrity base of strain invariants for constitutive equations of isotropic materials..26
- **BETTEN, J.:** Modification of the normality rule.........................34
- **DE BOER, R.:** Plastic behaviour of saturated porous media........46
- **GÜNTHER, H.:** Compressible plastic deformation of porous metals...58
- **PAWELSKI, O.; HOP, R.; HAGEDORN, K.E.:** Application of the mathematical theory of plasticity for developing new methods of material testing...65
- **STECK, E.:** Stochastic models for the plasticity of metals.........77
- **STEIN, E.; MÜLLER-HOEPEPE, N.:** A concept for modelling and computation of finite inelastic deformations.........................88

2 Applied Plasticity

- **SZCZEPINSKI, W.:** A theoretical and experimental modelling of the mechanics of ductile fracture in metals.........................103
- **BESDO, D.:** A numerical Cosserat-approach predicting the statical stability of a plane frictionless block-structure, and its boundary conditions...122
- **BOEHLER, J.-P.; KOSS, S.:** Evolution of anisotropy in sheet-steels submitted to off-axes large deformations..............143
- **COLLINS, I.F.:** On the theory of plane strain deformations of critical state models for sands.......................................159
- **GAMER, V.:** On the quasi-analytical solutions of elastic-plastic problems with nonlinear hardening.........................168
XII Contents

GUDEHUS, G.; TEJCHMAN, J.: Some mechanisms of a granular mass in a silo - model tests and a numerical Cosserat approach........178

IKEGAMI, K.; NIITSU, Y.: Experimental investigation on plastic deformation of stainless steel at low temperature..................194

3 Critical States, Failure and Fracture

LECKIE, F.A.; LEMAITRE, J.: Plasticity-related critical states and failure criteria.................................215

BAŽANT, Z.P.: Physical argument for nonlocality of microcracking damage in a continuum.................................238

BONTCHEVA, N.; BALTOV, A.: Plastic localization in damaged materials..242

FISCHER, F.D.; STÜWE, H.: Some remarks to the application of damage mechanics to low cycle fatigue...............252

GROSS, D.; CHEN, Y.Z.: A new integral equation approach for the curved crack problem in a circular plate........267

HERRMANN, K.P.; WANG, Y.Q.: Crack analysis in fibrous composites with partially plastified matrix materials........274

KNOPS, R.J.: On isolated point singularities in classical elasticity...286

STEINMANN, P.; WILLAM, K.: Localization within the framework of micropolar elasto-plasticity..................296

THERMANN, K.: Bifurcation phenomena of compressible materials in the plane tension or compression test..........314

4 Dynamic Elasto-Plasticity

HULT, J.: Impact load on elastic rod embedded in a rigid plastic medium..327

FOTIU, P.; IRSCHIK, H.; ZIEGLER, F.: Micromechanical foundations of dynamic plasticity with applications to damaging structures..338

GRUNDMANN, H.; KONRAD, A.; ZIRWAS, G.: The elastic continuum with a cylindrical hole subjected to a moving time depending load..350
Contents

MÜLLER, M.; HAUGER, W.: Elastic-plastic wave propagation of combined generalized forces in a Timoshenko beam.............361

TIROSH, J.; IDDAN, D.: On the limit analysis of high speed forming processes in cold or hot conditions.................371

5 Thermomechanics

INOUE, T.; JU, D.: Thermomechanical simulation of some types of steady continuous casting processes..................389

HAUPT, P.: On the thermodynamics of rate-independent elastoplastic materials..416

MÜLLER, I.: Some remarks on thermo-mechanical hysteresis........428

TANAKA, K.: Analysis of recovery stress and cyclic deformation in shape memory alloys.................................441

6 Rheology of Solids

LÄERMANN, K.H.: On a hybrid method to analyse viscoelastic problems..455

BRÖLLE, O.S.: Energetical aspects of polymer failure.................466

ISHIKAWA, H.: Creep behavior of SUS304 after cyclic plasticity...480

KALISZKY, S.; VÁSÁRHELYI, A.; LÓGÓ, J.: The time history analysis of viscoelastic structures by mathematical programming..488