CAUSALITY

Models, Reasoning, and Inference Second Edition

Contents

		the First Edition the Second Edition	<i>page</i> xv xix	
1		Introduction to Probabilities, Graphs, and Causal Models		
•	1.1			
		1.1.1 Why Probabilities?	1 1	
		1.1.2 Basic Concepts in Probability Theory	2	
		1.1.3 Combining Predictive and Diagnostic Supports	6	
		1.1.4 Random Variables and Expectations	8	
		1.1.5 Conditional Independence and Graphoids	11	
	1.2	Graphs and Probabilities	12	
		1.2.1 Graphical Notation and Terminology	12	
		1.2.2 Bayesian Networks	13	
		1.2.3 The <i>d</i> -Separation Criterion	16	
		1.2.4 Inference with Bayesian Networks	20	
	1.3	Causal Bayesian Networks	21	
		1.3.1 Causal Networks as Oracles for Interventions	22	
		1.3.2 Causal Relationships and Their Stability	24	
	1.4	Functional Causal Models	26	
		1.4.1 Structural Equations	27	
		1.4.2 Probabilistic Predictions in Causal Models	30	
		1.4.3 Interventions and Causal Effects in Functional Models	32	
		1.4.4 Counterfactuals in Functional Models	33	
	1.5	Causal versus Statistical Terminology	38	
2	ΑT	heory of Inferred Causation	41	
	2.1	Introduction - The Basic Intuitions	42	
	2.2	The Causal Discovery Framework	43	
	2.3	Model Preference (Occam's Razor)	45	
	2.4	Stable Distributions	48	
	2.5	Recovering DAG Structures	49	
	2.6	Recovering Latent Structures	51	

vii

Contents

	2.7	Local	Criteria for Inferring Causal Relations	54	
			mporal Causation and Statistical Time	57	
		Concl	•	59	
		2.9.1	On Minimality, Markov, and Stability	61	
3	Cor	sal Di	agrams and the Identification of Causal Effects	65	
3		Introd		66	
			ention in Markovian Models	68	
	3.2	3.2.1		68	
		-	Graphs as Models of Interventions Interventions as Variables	70	
				70	
			Computing the Effect of Interventions Identification of Causal Quantities	77	
	2.2			78	
	3.3		olling Confounding Bias The Back-Door Criterion	79	
			The Front-Door Criterion	81	
•				83	
	2.4		Example: Smoking and the Genotype Theory culus of Intervention	85	
	3.4			85	
			Preliminary Notation Inference Rules	85	
				86	
			Symbolic Derivation of Causal Effects: An Example	88	
	2.5		Causal Inference by Surrogate Experiments	89	
	3.5	-	rical Tests of Identifiability	91	
			Identifying Models	93	
	26		Nonidentifying Models	93 94	
	3.0	Discu		94	
		3.6.1		94 96	
			Diagrams as a Mathematical Language	98	
			Translation from Graphs to Potential Outcomes Relations to Robins's G-Estimation	102	
		3.6.4	Relations to Robins's G-Estimation	102	
4	Actions, Plans, and Direct Effects				
	4.1	Introd	luction	108	
		4.1.1	Actions, Acts, and Probabilities	108	
		4.1.2	Actions in Decision Analysis	110	
		4.1.3	Actions and Counterfactuals	112	
	4.2	Cond	itional Actions and Stochastic Policies	113	
	4.3	When	Is the Effect of an Action Identifiable?	114	
		4.3.1	Graphical Conditions for Identification	114	
		4.3.2	Remarks on Efficiency	116	
		4.3.3	Deriving a Closed-Form Expression		
			for Control Queries	117	
		4.3.4	Summary	118	
	4.4	The I	dentification of Dynamic Plans	118	
		4.4.1	Motivation	118	
		4.4.2	Plan Identification: Notation and Assumptions	120	

Contents ix

		4.4.3	Plan Identification: The Sequential Back-Door Criterion	121
		4.4.4	Plan Identification: A Procedure	124
	4.5	Direct	and Indirect Effects	126
		4.5.1	Direct versus Total Effects	126
		4.5.2	Direct Effects, Definition, and Identification	127
		4.5.3	Example: Sex Discrimination in College Admission	128
		4.5.4	Natural Direct Effects	130
		4.5.5	Indirect Effects and the Mediation Formula	132
5	Cau		and Structural Models in Social Science and Economics	133
	5.1		luction	134
		5.1.1	,	134
			SEM: How Its Meaning Became Obscured	135
			Graphs as a Mathematical Language	138
	5.2	•	s and Model Testing	140
			The Testable Implications of Structural Models	140
			Testing the Testable	144
			Model Equivalence	145
	5.3	•	as and Identifiability	149
			Parameter Identification in Linear Models	149
			Comparison to Nonparametric Identification	154
		5.3.3	Causal Effects: The Interventional Interpretation of	
			Structural Equation Models	157
	5.4		Conceptual Underpinnings	159
			What Do Structural Parameters Really Mean?	159
			Interpretation of Effect Decomposition	163
		5.4.3	Exogeneity, Superexogeneity, and Other Frills	165
		Concl		170
	5.6		cript for the Second Edition	171
			An Econometric Awakening?	171
		-	Identification in Linear Models	171
		5.6.3	Robustness of Causal Claims	172
6		_	Paradox, Confounding, and Collapsibility	173
	6.1	_	son's Paradox: An Anatomy	174
			A Tale of a Non-Paradox	174
			A Tale of Statistical Agony	175
			Causality versus Exchangeability	177
			A Paradox Resolved (Or: What Kind of Machine Is Man?)	180
	6.2		There Is No Statistical Test for Confounding, Why Many	
			There Is, and Why They Are Almost Right	182
		6.2.1	Introduction	182
		6.2.2	Causal and Associational Definitions	184
	6.3		the Associational Criterion Fails	185
		6.3.1	Failing Sufficiency via Marginality	185
		6.3.2	Failing Sufficiency via Closed-World Assumptions	186

x Contents

		6.3.3	Failing Necessity via Barren Proxies	186
			Failing Necessity via Incidental Cancellations	188
	6.4		versus Incidental Unbiasedness	189
		6.4.1	Motivation	189
		6.4.2	Formal Definitions	191
		6.4.3	Operational Test for Stable No-Confounding	192
	6.5		unding, Collapsibility, and Exchangeability	193
		6.5.1	Confounding and Collapsibility	193
		6.5.2	Confounding versus Confounders	194
		6.5.3	Exchangeability versus Structural Analysis of Confounding	196
	6.6	Conclu	usions	199
7	The	Logic	of Structure-Based Counterfactuals	201
		_	ural Model Semantics	202
		7.1.1	Definitions: Causal Models, Actions, and Counterfactuals	202
		7.1.2	Evaluating Counterfactuals: Deterministic Analysis	207
		7.1.3	Evaluating Counterfactuals: Probabilistic Analysis	212
		7.1.4	The Twin Network Method	213
	7.2	Applic	cations and Interpretation of Structural Models	215
		7.2.1	Policy Analysis in Linear Econometric Models:	
			An Example	215
		7.2.2	The Empirical Content of Counterfactuals	217
		7.2.3	Causal Explanations, Utterances, and Their Interpretation	221
		7.2.4	From Mechanisms to Actions to Causation	223
		7.2.5	Simon's Causal Ordering	226
	7.3	Axion	natic Characterization	228
		7.3.1	The Axioms of Structural Counterfactuals	228
		7.3.2	Causal Effects from Counterfactual Logic: An Example	231
		7.3.3	Axioms of Causal Relevance	234
	7.4		ural and Similarity-Based Counterfactuals	238
			Relations to Lewis's Counterfactuals	238
			Axiomatic Comparison	240
			Imaging versus Conditioning	242
			Relations to the Neyman–Rubin Framework	243
		7.4.5	Exogeneity and Instruments: Counterfactual and	
			Graphical Definitions	245
	7.5		ural versus Probabilistic Causality	249
		7.5.1	The Reliance on Temporal Ordering	249
			The Perils of Circularity	250
			Challenging the Closed-World Assumption, with Children	252
		7.5.4	Singular versus General Causes	253
		7.5.5	Summary	256
8	Im	•	Experiments: Bounding Effects and Counterfactuals	259
	8.1		luction	259
		8.1.1	Imperfect and Indirect Experiments	259
		8.1.2	Noncompliance and Intent to Treat	26

Contents xi

	8.2	Bound	ing Causal Effects with Instrumental Variables	262
		8.2.1	Problem Formulation: Constrained Optimization	262
		8.2.2	Canonical Partitions: The Evolution of	
			Finite-Response Variables	263
		8.2.3	Linear Programming Formulation	266
		8.2.4	The Natural Bounds	268
		8.2.5	Effect of Treatment on the Treated (ETT)	269
		8.2.6	Example: The Effect of Cholestyramine	270
	8.3	Counte	erfactuals and Legal Responsibility	271
	8.4	A Test	for Instruments	274
	8.5	A Bay	esian Approach to Noncompliance	275
		8.5.1	Bayesian Methods and Gibbs Sampling	275
		8.5.2	The Effects of Sample Size and Prior Distribution	277
		8.5.3	Causal Effects from Clinical Data with Imperfect	
			Compliance	277
		8.5.4	Bayesian Estimate of Single-Event Causation	280
	8.6	Conclu		281
9		•	of Causation: Interpretation and Identification	283
	9.1	Introdu	action	283
	9.2	Necess	sary and Sufficient Causes: Conditions of Identification	286
		9.2.1	Definitions, Notation, and Basic Relationships	286
		9.2.2	Bounds and Basic Relationships under Exogeneity	289
		9.2.3	Identifiability under Monotonicity and Exogeneity	291
		9.2.4	Identifiability under Monotonicity and Nonexogeneity	293
	9.3	Examp	les and Applications	296
		9.3.1	Example 1: Betting against a Fair Coin	296
		9.3.2	Example 2: The Firing Squad	297
		9.3.3	Example 3: The Effect of Radiation on Leukemia	299
		9.3.4	Example 4: Legal Responsibility from Experimental and	
			Nonexperimental Data	302
		9.3.5	Summary of Results	303
	9.4	Identif	ication in Nonmonotonic Models	304
	9.5	Conclu	isions	307
10		Actual (- · · · · · · · · · · · · · · · · · · ·	309
	10.1		action: The Insufficiency of Necessary Causation	309
			Singular Causes Revisited	309
			Preemption and the Role of Structural Information	311
			Overdetermination and Quasi-Dependence	313
			Mackie's INUS Condition	313
	10.2		ction, Dependence, and Sustenance	316
	10.3		Beams and Sustenance-Based Causation	318
		10.3.1	Causal Beams: Definitions and Implications	318
		10.3.2	Examples: From Disjunction to General Formulas	320
		10.3.3	Beams, Preemption, and the Probability of	
			Single-Event Causation	322

		10.3.4 Path-Switching Causation	324
		10.3.5 Temporal Preemption	325
	10.4	Conclusions	327
-11	Reflec	ctions, Elaborations, and Discussions with Readers	331
	11.1	Causal, Statistical, and Graphical Vocabulary	331
		11.1.1 Is the Causal-Statistical Dichotomy Necessary?	331
		11.1.2 d-Separation without Tears (Chapter 1, pp. 16–18)	335
	11.2	Reversing Statistical Time (Chapter 2, p. 58–59)	337
	11.3	Estimating Causal Effects	338
		11.3.1 The Intuition behind the Back-Door Criterion	
		(Chapter 3, p. 79)	338
		11.3.2 Demystifying "Strong Ignorability"	341
		11.3.3 Alternative Proof of the Back-Door Criterion	344
		11.3.4 Data vs. Knowledge in Covariate Selection	346
		11.3.5 Understanding Propensity Scores	348
		11.3.6 The Intuition behind do-Calculus	352
		11.3.7 The Validity of G-Estimation	3 5 2
	11.4	Policy Evaluation and the do-Operator	354
		11.4.1 Identifying Conditional Plans (Section 4.2, p. 113)	354
		11.4.2 The Meaning of Indirect Effects	355
		11.4.3 Can $do(x)$ Represent Practical Experiments?	358
		11.4.4 Is the $do(x)$ Operator Universal?	359
		11.4.5 Causation without Manipulation!!!	361
		11.4.6 Hunting Causes with Cartwright	362
		11.4.7 The Illusion of Nonmodularity	364
	11.5	Causal Analysis in Linear Structural Models	366
		11.5.1 General Criterion for Parameter Identification	200
		(Chapter 5, pp. 149–54)	366
		11.5.2 The Causal Interpretation of Structural Coefficients	366
		11.5.3 Defending the Causal Interpretation of SEM (or, SEM	368
		Survival Kit)	300
		11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman	374
		11.5.5 External Variation versus Surgery	376
	11. 6	Decisions and Confounding (Chapter 6)	380
	11.0	11.6.1 Simpson's Paradox and Decision Trees	380
		11.6.2 Is Chronological Information Sufficient for	300
		Decision Trees?	382
		11.6.3 Lindley on Causality, Decision Trees, and Bayesianism	384
		11.6.4 Why Isn't Confounding a Statistical Concept?	387
	11.7	The Calculus of Counterfactuals	389
	11.7	11.7.1 Counterfactuals in Linear Systems	389
		11.7.2 The Meaning of Counterfactuals	391
		11.7.3 d-Separation of Counterfactuals	393
		· · · · · · · · · · · · · · · · · · ·	

Contents		xiii
11.8	Instrumental Variables and Noncompliance	395
	11.8.1 Tight Bounds under Noncompliance	395
11.9	More on Probabilities of Causation	396
	11.9.1 Is "Guilty with Probability One" Ever Possible?	396
	11.9.2 Tightening the Bounds on Probabilities of Causation	398
Epilogue T	The Art and Science of Cause and Effect	
A pub	olic lecture delivered in November 1996 as part of	
the U	CLA Faculty Research Lectureship Program	401
Bibliography		429
Name Index		453
Subject Index		