Concrete Mixture Proportioning

A scientific approach

François de Larrard

E & FN SPON An Imprint of Routledge London and New York

Contents

	Fore	eword		x
	Pref	face		xii
	Acknowledgements			xvi
1	Packing density and homogeneity of granular			
	mixes			1
	1.1	Virtual packing density of a granular mix		2
		1.1.1	Binary mix without interaction	2
		1.1.2	Binary mix with total interaction	5
		1.1.3	Binary mix with partial interaction	6
		1.1.4	Polydisperse mix without interaction	9
		1.1.5	Polydisperse mix: general case	11
	1.2	Actua	al packing density: the compressible	
		packi	ng model (CPM)	12
		1.2.1	Compaction index and actual packing	
			density	13
		1.2.2	Calibration of the model with binary	
			data	16
		1.2.3	Validation with data of various origins	27
	1.3	Effect	t of boundary conditions on the mean	
		packing density		38
		1.3.1	Wall effect due to the container	38
		1.3.2	Effect of fibrous inclusions	41
	1.4	Granular mixes of maximum packing density		45
		1.4.1	An appolonian model for a simplified	
			approach	45
		1.4.2	Binary mixtures	46
		1.4.3	Ternary mixtures	48
		1.4.4	Optimal mixtures among a given	
			grading span	52

		1.4.5	Effect of boundary conditions	60
	1.5	Segregation of granular mixes		60
		1.5.1	Some experimental facts	61
		1.5.2	Quantitative indicators: filling diagram	
			and segregation potential	63
		1.5.3.	Examples: some simulations with the	
			CPM	69
	1.6	Sumn	nary	73
2	Rel	ationsl	nips between mix composition and	
	properties of concrete			77
	2.1	Fresh	concrete properties	77
		2.1.1	The rheological behaviour of fresh	
			concrete	78
		2.1.2	Plastic viscosity	87
		2.1.3	Yield stress	95
		2.1.4	Abrams cone slump	100
		2.1.5	Placeability	106
		2.1.6	Entrapped air	109
		2.1.7	Stability (prevention of bleeding and	
			segregation)	115
		2.1.8	Simplified models for workability	122
	2.2	Adiał	patic temperature rise	125
		2.2.1	Heat capacity	126
		2.2.2	Degree of consumption of binders	127
		2.2.3	Heat of hydration	131
		2.2.4	Adiabatic temperature rise	133
	2.3	Comp	pressive strength	135
		2.3.1	Mature paste of Portland cement	135
		2.3.2	Effect of cement concentration on	
			concrete compressive strength	140
		2.3.3	Granular inclusion: effect of the	
			topology	142
		2.3.4	Granular inclusion: effect of the rock	
			type (de Larrard and Belloc, 1997)	147
		2.3.5	Strength development vs. time	156
		2.3.6	Contribution of pozzolanic admixtures	158
		2.3.7	Contribution of limestone fillers	164
		2.3.8	Summary: a general model of	
	a (compressive strength	169
	2.4	Tensi	le strength	173

	2.4.1	Power-law type relationship between	
		tensile and compressive strengths	173
	2.4.2	Effect of aggregate type	176
2.5	Defor	mability of hardened concrete	177
	2.5.1	The two-phase nature of hardened	
		concrete: the triple-sphere model	179
	2.5.2	Elastic modulus	184
	2.5.3	Basic creep	192
	2.5.4	Total creep	197
	2.5.5	Autogenous shrinkage	200
	2.5.6	Total shrinkage	204
	2.5.7	Conclusion: effect of changes in	
		mix-design parameters on concrete	
		deformability	212
2.6	Facto	rs affecting concrete permeability	213
	2.6.1	Permeability and porosity	215
	2.6.2	Permeability and compressive strength	217
2.7	Sumr	nary: the various types of granular	
	syster	m to be considered in concrete mix design	218
Cor	ncrete d	constituents: relevant parameters	222
3.1	Aggr	egate	222
	3.1.1	Specific gravity	222
	3.1.2	Porosity and water absorption	223
	3.1.3	Size distribution	224
	3.1.4	Residual packing density	225
	3.1.5	Elastic modulus	226
	3.1.6	Contribution to compressive strength	227
	3.1.7	Contribution to tensile strength	228
	3.1.8	Heat capacity	229
3.2	Ceme	ent	229
	3.2.1	Specific gravity	229
	3.2.2	Grading curve	230
	3.2.3	Residual packing density with and	
		without admixture	231
	3.2.4	Bogue composition	232
	3.2.5	Strength vs. time	233
	3.2.6	Contribution to autogenous shrinkage	234
3.3	Mine	ral admixtures (supplementary	
	ceme	ntitious materials)	235
	221	Specific gravity	236

3

		3.3.2	Grading curve	236
		5.5.5	without admixture	220
		331	Activity coefficients vs. time	239
	3 /	Diacti	cizors /superplasticizors	239
	5.4	2 / 1	Specific growity and dry extract	240
		247	Specific gravity and dry extract	243
		5.4.2	couples	244
			couples	211
4	Mix design of concrete			250
	4.1	Speci	fying a concrete for a given application	251
		4.1.1	Fresh concrete properties	251
		4.1.2	Hardening concrete properties	259
		4.1.3	Hardened concrete properties	261
		4.1.4	Long-term concrete properties	263
		4.1.5	Some rules for setting up a list of	
			specifications	266
	4.2	Soluti	ion of the mix-design problem	268
		4.2.1	Analytical solution and general	
			relationships	269
		4.2.2	Numerical solution: discussion of the	
			previous relationships	281
		4.2.3	Practical mixture-proportioning process	289
		4.2.4	Example	292
	4.3 Quest		tions relating to the aggregate skeleton	301
		4.3.1	Choice of the maximum size of	
			aggregate (MSA)	301
		4.3.2	Rounded vs. crushed aggregate	302
		4.3.3	Continuously graded vs. gap-graded	
			concretes	304
	4.4	Quest	tions relating to the binders	308
		4.4.1	Use of limestone filler	309
		4.4.2	Use of fly ash	311
		4.4.3	Use of silica fume	313
	4.5	Stabil	lity of concrete in an industrial process	317
		4.5.1	Strategy for designing a mixture of	
			minimum variability	317
		4.5.2	Assessment by testing	319
		4.5.3	Assessment by simulation	322
	4.6 Review of some standard methods in the light			
		of the	e present approach	322

		4.6.1	US method (ACI 211)	323
		4.6.2	British method (BRE 1988)	327
		4.6.3	French method (Dreux, 1970)	329
		4.6.4	Baron and Lesage's method (France)	332
5	Applications: various concrete families			
	5.1^{-1}	5.1 Preliminary simulations: from normal-strength		
		to very-high-strength concretes		
	5.2	5.2 Normal-strength structural concrete		343
		5.2.1	C40 for bridges	343
		5.2.2	C25 for building	346
	5.3	High	-performance concrete	348
		5.3.1	'Basic' high-performance concrete	349
		5.3.2	Low-heat HPC for nuclear power plant	351
		5.3.3	Ultra-stable HPC for composite bridge	
			deck	354
		5.3.4	Ultra-high-performance mortar	357
	5.4	Conc	cretes with special placing methods	
		5.4.1	Roller-compacted concrete	360
		5.4.2	Shotcrete (wet process)	363
		5.4.3	Self-compacting concrete	368
	5.5 Concretes with		retes with special composition	372
		5.5.1	Lightweight aggregate concrete	372
		5.5.2	High-volume fly ash concrete	382
		5.5.3	Sand concrete	385
Co	nclu	sion		389
	The concrete system			389
	Research needs		390	
	Refe	References		
	List of symbols		406	
	Appendix: Flowchart for mixture simulation		415	
	Index			419