PROGRAMMED CELL DEATH, GENERAL PRINCIPLES FOR STUDYING CELL DEATH, PART A

EDITED BY
ROYA KHOSRAVI-FAR
Harvard Medical School, Department of Pathology, BIDMC
Research North, RN 270D
Boston, MA, USA

ZAHRA ZAKERI
Professor of Biology
Queens College of City University of New York
Flushing, NY, USA

RICHARD A. LOCKSHIN
Department of Biological Sciences
St. John’s University
Jamaica, NY, USA

MAURO PIACENTINI
Department of Biology
University of Rome
Rome, Italy

VOLUME FOUR HUNDRED AND FORTY-TWO

METHODS IN ENZYMEOLOGY

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Preface</th>
<th>Volumes in Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
<td>xxi</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1. Analyzing Morphological and Ultrastructural Features in Cell Death

Antonella Tinari, Anna Maria Giammarioli, Valeria Manganelli, Laura Clario, and Walter Malorni

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. The Contribution of Morphological Analyses</td>
<td>5</td>
</tr>
<tr>
<td>3. Light Microscopy</td>
<td>5</td>
</tr>
<tr>
<td>4. Sample Processing for Light Microscopy</td>
<td>6</td>
</tr>
<tr>
<td>5. Electron Microscopy</td>
<td>13</td>
</tr>
<tr>
<td>6. Scanning Electron Microscopy (SEM)</td>
<td>24</td>
</tr>
</tbody>
</table>

References 25

2. Evaluation of Some Cell Death Features by Real Time Real Space Microscopy

Soraya S. Smaili, Tatiana R. Rosenstock, and Yi-Te Hsu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mitochondria and Cell Death</td>
<td>28</td>
</tr>
<tr>
<td>2. Bax, Mitochondria, and Calcium Signaling</td>
<td>31</td>
</tr>
<tr>
<td>3. Calcium Signaling and Neurodegenerative Processes</td>
<td>40</td>
</tr>
</tbody>
</table>

Acknowledgments 46

References 46

3. Analysis of Apoptotic Pathways by Multiparametric Flow Cytometry: Application to HIV Infection

Hervé Lecoeur, Marie-Thérèse Melki, Héla Saïdi, and Marie-Lise Gougeon

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>52</td>
</tr>
<tr>
<td>2. Intracellular Expression of Bcl-2 Family Members and Relationship with Apoptosis</td>
<td>54</td>
</tr>
<tr>
<td>3. Analysis of Mitochondrial Transmembrane Potential by DiOC₆(3) Staining</td>
<td>58</td>
</tr>
</tbody>
</table>
7. Apoptosome Assembly
Yigong Shi
1. Introduction
2. Apoptosome for Caspase-9 Activation
3. Dark Apoptosome for Dronc Activation
4. CED-4 Apoptosome for CED-3 Activation
5. Conclusion
Acknowledgments
References

8. Caspases: Determination of Their Activities in Apoptotic Cells
Alena Vaculova and Boris Zhivotovsky
1. Introduction
2. Methods for Analysis of Caspase Processing, Activation, and Substrate Cleavage
3. Conclusion
Acknowledgments
References

9. Lysosomes in Apoptosis
Saška Ivanova, Urška Repnik, Lea Bojič, Ana Petelin, Vito Turk, and Boris Turk
1. Introduction
2. Lysosomal Membrane Permeabilization Induction
3. Methods Used for the Detection of Lysosome Integrity
4. Staining for Acid Compartments/Vesicles
5. Validation of Lysosomal Membrane Permeabilization
6. Preparation of Cytosolic Extract
7. Lysosomal Cathepsins
8. Synthetic Cathepsin Substrates
9. Cleavage of Protein Substrates
References

10. More Than Two Sides of a Coin?
How to Detect the Multiple Activities of Type 2 Transglutaminase
Carlo Rodolfo, Laura Falasca, Giuseppina Di Giacomo, Pier Giorgio Mastroberardino, and Mauro Piacentini
1. Introduction
2. TG2 Activity Assays
3. GTPase Assay 205
4. TG2 Knockout Mice as Model System 205
5. Immunocytochemistry and Immunofluorescence Detection of TG2 207
6. In Vitro Phagocytosis Assays 208
7. TG2 Acts as a Protein Disulfide Isomerase (PDI) 210
8. Conclusions 210
Acknowledgments 211
References 211

11. Granzymes and Cell Death 213
Denis Martinvalet, Jerome Thiery, and Dipanjan Chowdhury
1. Introduction 214
2. Purification of Rat Perforin from RNK-16 NK-like Leukemia Cells 215
3. Expression and Purification of Recombinant Granzyme B in a Baculovirus System 221
4. Expression and Purification of Recombinant human Granzyme A in Escherichia coli 223
5. Granzyme-Mediated Apoptosis Assay 227
6. Conclusion 229
Acknowledgment 229
References 229

12. Investigation of the Proapoptotic Bcl-2 Family Member Bid on the Crossroad of the DNA Damage Response and Apoptosis 231
Sandra S. Zinkel
1. Introduction 232
2. Isolation of Myeloid Precursor Cells from Mouse Bone Marrow Cells 235
3. Isolation of Myeloid Precursor Cells 237
4. Purification of Lin⁻ Cells 237
5. Sca-1 Positive Selection 237
6. Magnetic Separation 238
7. Culture of Lineage-Depleted, Sca1⁺ Bone Marrow Cells 238
8. WEHI-Conditioned Medium (Source of IL-3) (Warner et al., 1969) 239
9. Chromosomal Breakage Assays 239
10. Radioresistant DNA synthesis 240
11. Data Analysis 241
12. Subcellular Fractionation 242
13. Immunofluorescence Staining on Adherent Cells 244
14. Annexin V Staining 247
15. Conclusion 249
Acknowledgments 249
References 249

13. Assembly, Purification, and Assay of the Activity of the ASC Pyroptosome 251
Teresa Fernandes-Alnemri and Emad S. Alnemri

1. Introduction 252
2. Methods 254
3. Generation of Stable THP-1 Cells Expressing an ASC-Green Fluorescent Protein (GFP) Fusion Protein to Visualize ASC Oligomerization 254
4. Biochemical Assay of ASC Pyroptosome Formation in Stimulated THP-1 or Primary Macrophages 258
5. In Vitro Assembly and Purification of ASC Pyroptosomes from THP-1 Cell Lysates 261
6. In Vitro Assembly and Purification of Recombinant ASC Pyroptosomes 264
Acknowledgments 268
References 268

14. Nucleases in Programmed Cell Death 271
Kohki Kawane and Shigekazu Nagata

1. Introduction 272
2. Assays for CAD 273
3. Assay for DNase II 278
4. Assays for Cell-Autonomous Apoptotic DNA Degradation 279
5. Assay for Noncell-Autonomous DNA Degradation in Macrophages 282
References 285

15. Detection of Autophagy in Cell Death 289
Zahra Zakeri, Alicia Melendez, and Richard A. Lockshin

1. Introduction 290
2. Structural: Electron Microscopic Recognition of Lysosomes, Autophagic Vesicles, and Autophagosomes 292
3. Identification of Lysosomal Enzyme Activity 294
4. Specific Uptake of Molecules into Lysosomes and Detection of These Molecules by Fluorescence 296
19. Oxidative Lipidomics of Programmed Cell Death 375
Vladimir A. Tyurin, Yulia Y. Tyurina, Patrick M. Kochanek, Ronald Hamilton, Steven T. DeKosky, Joel S. Greenberger, Hülya Bayir, and Valerian E. Kagan

1. Introduction 376
2. Materials and Methods 377
3. Results and Discussion 379
Acknowledgments 390
References 390

20. Identification and Characterization of Endoplasmic Reticulum Stress-Induced Apoptosis In Vivo 395
Kezhong Zhang and Randal J. Kaufman

1. The Endoplasmic Reticulum (ER) and the Unfolded Protein Response 396
2. Endoplasmic Reticulum Stress-Induced Apoptosis 398
3. Methods Used to Identify and Characterize ER Stress-Induced Apoptosis In Vivo 402
Acknowledgments 415
References 415

21. Organelle Intermixing and Membrane Scrambling in Cell Death 421
Mauro Degli Esposti

1. Introduction 422
2. Methods Used to Evaluate Intermixing of Mitochondria with Other Organelles 423
3. Methods Used to Evaluate Caspase-Dependent Changes in Intracellular Traffic 432
4. Outlook 436
Acknowledgments 436
References 436

22. Mechanisms and Methods in Glucose Metabolism and Cell Death 439
Yuxing Zhao, Heather L. Wieman, Sarah R. Jacobs, and Jeffrey C. Rathmell

1. Introduction 439
2. Methods 443
3. Conclusion 454
Acknowledgments 454
References 454
Author Index 459
Subject Index 485