CIVIL ENGINEERING HYDRAULICS

Essential Theory with Worked Examples

Third Edition

R. E. Featherstone C. Nalluri

Blackwell Science

Contents

Preface to third edition		
Chapte	r 1 Properties of Fluids	1
1.1	Introduction	1
1.2	Engineering units	1
1.3	Mass density and specific weight	1
1.4	Relative density	2 2 3 3 3 5
1.5	Viscosity of fluids	2
1.6	Compressibility and elasticity of fluids	2
1.7	Vapour pressure of liquids	3
1.8	Surface tension and capillarity	3
Wor	ked examples	3
Reco	ommended reading	5
Prob	lems	5
Chapte	r 2 Fluid Statics	7
2.1	Introduction	7
2.2	Pascal's law	7
2.3	Pressure variation with depth in a static incompressible fluid	7
2.4		9
2.5	•	11
	Pressure diagrams	14
	Hydrostatic thrust on curved surfaces	15
2.8	Hydrostatic buoyant thrust	17
2.9		18
	Determination of metacentre	19
	Periodic time of rolling (or oscillation) of a floating body	21
	Liquid ballast and the effective metacentric height	21
	Relative equilibrium	22
	ked examples	24
	ommended reading	42
Prot	olems	42
Chapte	er 3 Fluid Flow Concepts and Measurements	47
3.1		47
3.2	Steady and unsteady flows	48

3.3 Uniform and non-uniform flows	48	
3.4 Rotational and irrotational flows	49	
3.5 One, two and three dimensional flows	49	
3.6 Streamtube and continuity equation	49	
3.7 Accelerations of fluid particles	50	
3.8 Two kinds of fluid flow	52	
3.9 Dynamics of fluid flow	53	
3.10 Energy equation for an ideal fluid flow	53	
3.11 Modified energy equation for real fluid flows	55	
3.12 Separation and cavitation in fluid flows	57	
3.13 Impulse-momentum equation	58	
3.14 Energy losses in sudden transitions	58	
3.15 Flow measurement through pipes	59	
3.16 Flow measurement through orifices and mouthpieces	62	
3.17 Flow measurement in channels	66	
Worked examples	70	
Recommended reading	86	
Problems	86	
Chapter 4 Flow of Incompressible Fluids in Pipelines	91	
4.1 Resistance in circular pipelines flowing full	91 91	
4.2 Resistance in non-circular sections	95	
4.3 Local losses	95 96	
Worked examples		
Recommended reading		
Problems		
	118	
Chapter 5 Pipe Network Analysis	121	
5.1 Introduction	121	
5.2 The head balance method ('loop' method)	122	
5.3 The quantity balance method ('nodal' method)	123	
5.4 Newton Raphson method	.125	
5.5 The linear theory method	125	
Worked examples	126	
Recommended reading	139	
Problems	139	
Chapter 6 Pump-Pipeline System Analysis and Design	145	
6.1 Introduction	145	
6.2 Hydraulic gradient in pump-pipeline systems	146	
6.3 Multiple pump systems	147	
6.4 Variable speed pump operation	148	
6.5 Suction lift limitations	149	
Worked examples		
Recommended reading		
Problems		

CONTENTS	vii	
Chapter 7 Boundary Layers on Flat Plates and in Ducts		
7.1 Introduction	168	
7.2 The laminar boundary layer	168	
7.3 The turbulent boundary layer	169	
7.4 Combined drag due to both laminar and turbulent boundary		
layers	170	
7.5 The displacement thickness	170	
7.6 Boundary layers in turbulent pipe flow	171	
7.7 The laminar sub-layer	173 175	
Worked examples		
Recommended reading	183	
Problems	183	
Chapter 8 Steady Flow in Open Channels	185	
8.1 Introduction	185	
8.2 Uniform flow resistance	186	
8.3 Channels of composite roughness	187	
8.4 Channels of compound section	188	
8.5 Channel design	189	
8.6 Uniform flow in part full circular pipes	191	
8.7 Steady, rapidly varied channel flow-energy principles	194	
8.8 The momentum equation and the hydraulic jump	195	
8.9 Steady, gradually varied open channel flow	197	
8.10 Computations of gradually varied flow	198	
8.11 Graphical and numerical integration methods	199	
8.12 The direct step method	199 199	
8.13 The standard step method		
8.14 Canal delivery problems	201 203	
8.15 Culvert flow	203 204	
8.16 Spatially varied flow in open channels Worked examples	204	
Recommended reading	200	
Problems	243	
Chapter 9 Dimensional Analysis, Similitude and Hydraulic Models	249	
9.1 Introduction	249	
9.2 Dimensional analysis	250	
9.3 Physical significance of non-dimensional groups	250	
9.4 The Buckingham π theorem	251	
9.5 Similitude and model studies	251 252	
Worked examples		
Recommended reading		
Problems	266	
Chapter 10 Ideal Fluid Flow and Curvilinear Flow	268	
10.1 Ideal fluid flow	268	

10.2	Streamlines, the stream function	268
10.3	Relationship between discharge and stream function	270
10.4	Circulation and the velocity potential function	270
10.5	Stream functions for basic flow patterns	271
10.6	Combinations of basic flow patterns	272
10.7	Pressure at points in the flow field	273
	The use of flow nets and numerical methods	273
10.9	Curvilinear flow of real fluids	277
10.10	Free and forced vortices	278
Worked examples		278
	mmended reading	290
Probl		290
Chapter	11 Gradually Varied Unsteady Flow from Reservoirs	293
-	Discharge between reservoirs under varying head	293
	Unsteady flow over a spillway	295
	Flow establishment	296
	ed examples	297
Probl	•	307
Chanton	12 Mars Oscillations and Busseys Transients in Binslines	
	• 12 Mass Oscillations and Pressure Transients in Pipelines Mass oscillation in pipe systems – surge chamber operation	309 309
12.1		309
12.2	sudden discharge stoppage	311
12.3	Solution including tunnel and surge chamber losses for	511
12.5	sudden discharge stoppage	312
12.4	Finite difference methods in the solution of the surge	.312
12.4	chamber equations	312
12.5	Pressure transients in pipelines (waterhammer)	312
	The basic differential equations of waterhammer	314
	Solutions of the waterhammer equations	313
	The Allievi equations	318
	Alternative formulation	321
	The Schnyder – Bergeron graphical method	321
	Pipeline friction and other losses	322
	Pressure transients at interior points	324
	Pressure transients at interior points Pressure transients caused by pump stoppage	325
	ed examples	328
	mmended reading	339
Probl		339
	• 13 Unsteady Flow in Channels	341
	Introduction	341
	Gradually varied unsteady flow	341
	Surges in open channels	342
	The upstream positive surge	343
	The downstream positive surge	345
13.6	Negative surge waves	345

/

1

13.7 The dam break		
Worked examples		
Recommended reading Problems		
		Chapter 14 Uniform Flow in Loose-Boundary Channels
14.1 Introduction	353	
14.2 Flow regimes	353	
14.3 Incipient (threshold) motion	353	
14.4 Resistance to flow in alluvial (loose bed) channels	355	
14.5 Velocity distributions in loose-boundary channels	357	
14.6 Sediment transport	357	
14.7 Bed load transport	359	
14.8 Suspended load transport	361	
14.9 Total load transport	363	
14.10 Regime channel design	364	
14.11 Rigid bed channels with sediment transport	369	
Worked examples	371	
Recommended reading	383	
Problems	385	
Answers	388	
Index		
Conversion Table (Metric to Imperial Units)		