6TH EDITION

GAS TURBINE THEORY

HIH Saravanamuttoo

Professor Emeritus, Department of Mechanical and Aerospace Engineering, Carleton University

GFC Rogers

Lately Professor Emeritus, University of Bristol

H Cohen

Lately Fellow, Queens' College, Cambridge

PV Straznicky

Professor Emeritus, Department of Mechanical and Aerospace Engineering, Carleton University

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Singapore • Hong Kong Tokyo • Seoul • Taipei • New Delhi • Cape Town • Madrid • Mexico City • Amsterdam • Munich • Paris • Milan

Contents

Foreword Prefaces		vii
		viii
Publisher's Acknowledgements		
	>	
1	Introduction	1
1	1.1 Open-cycle single-shaft and twin-shaft arrangements	5
	1.2 Multi-spool arrangements	9
	1.3 Closed cycles	10
	1.4 Aircraft propulsion	10
	1.5 Industrial applications	20
	1.6 Marine and land transportation	29
	1.7 Environmental issues	34
	1.8 Some future possibilities	36
	1.9 Gas turbine design procedure	40
2	Shaft power cycles	46
	2.1 Ideal cycles	46
	2.2 Methods of accounting for component losses	54
	2.3 Design point performance calculations	75
	2.4 Comparative performance of practical cycles	84
	2.5 Combined cycles and cogeneration schemes	89
	2.6 Closed-cycle gas turbines	94
3	Gas turbine cycles for aircraft propulsion	100
	3.1 Criteria of performance	101
	3.2 Intake and propelling nozzle efficiencies	105
	3.3 Simple turbojet cycle	114
	3.4 The turbofan engine	123
	3.5 The turboprop engine	139
	3.6 The turboshaft engine	142
	3.7 Auxiliary power units	143
	3.8 Thrust augmentation	147
	3.9 Miscellaneous topics	150

. . . .

CONTENTS

4	Contrifugal compressors	1.57
4	Centrifugal compressors	157
	4.1 Principle of operation	158
	4.2 Work done and pressure rise	160
	4.3 The diffuser	168
	4.4 Compressibility effects	173
	4.5 Non-dimensional quantities for plotting compressor	170
	characteristics	178
	4.6 Compressor characteristics	181
	4.7 Computerized design procedures	185
5	Axial flow compressors	187
	5.1 Basic operation	188
	5.2 Elementary theory	191
	5.3 Factors affecting stage pressure ratio	194
	5.4 Blockage in the compressor annulus	199
	5.5 Degree of reaction	201
	5.6 Three-dimensional flow	204
	5.7 Design process	213
	5.8 Blade design	234
	5.9 Calculation of stage performance	245
	5.10 Compressibility effects	254
	5.11 Off-design performance	259
	5.12 Axial compressor characteristics	263
	5.13 Closure	270
6	Combustion systems	272
U	6.1 Operational requirements	272
	6.2 Types of combustion system	273
	6.3 Some important factors affecting combustor design	274
	6.4 The combustion process	277
	-	278
	6.5 Combustion chamber performance	283 292
	6.6 Some practical problems 6.7 Gas turbine emissions	292 299
	6.8 Coal gasification	311
	0.8 Coal gasineation	211
7	Axial and radial flow turbines	315
	7.1 Elementary theory of axial flow turbine	316
	7.2 Vortex theory	334
	7.3 Choice of blade profile, pitch and chord	341
	7.4 Estimation of stage performance	354
	7.5 Overall turbine performance	364
	7.6 The cooled turbine	366
	7.7 The radial flow turbine	376
8	Mechanical design of gas turbines	385
~	8.1 Design process	386

iv

	 8.2 Gas turbine architecture 8.3 Loads and failure modes 8.4 Gas turbine materials 8.5 Design against failure and life estimations 8.6 Blades 8.7 Bladed rotor discs 8.8 Blade and disc vibration 8.9 Engine vibration 8.10 Other components 8.11 Closure 	388 390 392 412 417 428 434 440 445 451
	Prediction of performance of simple gas turbines 9.1 Component characteristics 9.2 Off-design operation of the single-shaft gas turbine 9.3 Equilibrium running of a gas generator 9.4 Off-design operation of free turbine engine 9.5 Off-design operation of the jet engine 9.6 Methods of displacing the equilibrium running line 9.7 Incorporation of variable pressure losses 9.8 Power extraction	453 456 457 463 466 477 486 489 490
	Prediction of performance—further topics 10.1 Methods of improving part-load performance 10.2 Matching procedures for twin-spool engines 10.3 Some notes on the behaviour of twin-spool engines 10.4 Matching procedures for turbofan engines 10.5 Transient behaviour of gas turbines 10.6 Performance deterioration 10.7 Principles of control systems	492 492 497 502 506 508 516 520
	 A.1 Compressibility effects (qualitative treatment) A.2 Basic equations for steady one-dimensional compressible flow of a perfect gas in a duct A.3 Isentropic flow in a duct of varying area A.4 Frictionless flow in a constant area duct with heat transfer A.5 Adiabatic flow in a constant area duct with friction A.6 Plane normal shock waves A.7 Oblique shock waves A.8 Isentropic two-dimensional supersonic expansion and compression 	525 525 530 533 534 536 538 543 543
Appendix B Problems		549
Appendix C References		568
Index.		580

v