Fortschritt-Berichte VDI

Reihe 15

Umwelttechnik

Dipl.-Phys. Uwe Müller, Dortmund

Nr. 226

Entwicklung optimaler Meß- und Auswertestrategien für die FTIR-spektrometrische Atmosphärenanalytik

Inhaltsverzeichnis

1	Einleitung							
2	Umweltforschung							
	2.1	Klima	relevante Spuren- und Schadgase	5				
	2.2	Weiter	re anthropogene Schadstoffemissionen	9				
	2.3	derungen an die Spuren- und Schadgasanalytik	10					
3	Gru	ındlage	en FTIR und alternative Messmethoden	12				
	3.1	Molekülbau und Wechselwirkung mit IR-Strahlung						
		3.1.1	Rotations-Schwingungsspektren	13				
		3.1.2	Qualitative Spektrenaussagen	14				
	3.2	FTIR-	-Spektroskopie	15				
		3.2.1		15				
		3.2.2	Vorteile von FT-Spektrometern gegenüber dispersiven Geräten .	17				
		3.2.3	Fourier-Transformation und Einkanalspektrenberechnung	18				
		3.2.4	Auflösung, Faltungseffekte und Zerofilling	20				
		3.2.5	Lambert-Beer'sches Gesetz und Extinktionsspektrenberechnung	22				
		3.2.6	FTIR-Messaufbau zur Schadgasbestimmung in der offenen At-					
			mosphäre	24				
	3.3	eich mit alternativen optischen Messtechniken	27					
		3.3.1	DOAS	27				
		3.3.2	Diodenlaser	28				
		3.3.3	LIDAR	29				
		3.3.4	Vergleich der Methoden untereinander	31				
4	Qua	Quantitative Spektroskopie						
	4.1	Spektrometerabhängige Einflüsse						
		4.1.1	Photometrische Genauigkeit mit FT-IR-Spektrometern	33				
		4.1.2	Stabilität der Wellenzahlskala	37				
	-	4.1.3	Lambert-Beer'sches Gesetz und mögliches nichtlineares Extink-					
			tionsverhalten	40				
	4.2		irkungen durch Abweichungen von Standardtemperatur und -druck	41				
	4.3	Hintergrundproblematik						

		4.3.1	3.1 Experimentelle Methoden								
		4.3.2	en zur Berechnung eines Hintergrundspektrums	47							
	4.4	Kompo	onentenei	kennung	56						
	4.5	Mathe:		Auswerteverfahren für die FTIR-Fernsondierung	62						
		4.5.1	Univaria	te Auswerteverfahren	64						
			4.5.1.1	Benzolproblematik	65						
		4.5.2	Multiva	riate Auswerteverfahren	67						
			4.5.2.1	Classical Least Squares-Algorithmus	67						
			4.5.2.2	Querempfindlichkeit mit atmosphärischen Komponenten	71						
,	•		4.5.2.3	Spektrenbereichsauswahl zur CLS-Auswertung	76						
			4.5.2.4	Alternativen zur CLS-Auswertung	82						
			4.5.2.5	Vor- und Nachteile der multivariaten Verfahren	84						
5	Erst	Erstellung eines Expertensystems									
	5.1	Spektr	envorbea	rbeitung	89						
	5.2			eferenzspektren	91						
	5.3	Auswe.	rtung un	d Darstellung	92						
		5.3.1	Segment	ierung von Spektralbereichen	94						
	5.4	Ermitt	eln der b	esten statistischen Ergebnisse	97						
6	Kal	ibrierg	briergasmessungen								
	6.1	Existie	rende F7	FIR-Gasspektrenbibliotheken	99						
		6.1.1	Spektrer	nbibliotheken	99						
		٠,	6.1.1.1	QASoft-Spektrenbibliothek	99						
			6.1.1.2	NIST-Spektrendatenbank	100						
			6.1.1.3	EPA-Spektrendatenbank	101						
		6.1.2	Paramet	ersammlungen zur Referenzspektrenberechnung	101						
			6.1.2.1	HITRAN-Datenbank	102						
			6.1.2.2	GEISA-Datenbank	103						
			6.1.2.3	ATMOS-Datenbank	103						
			6.1.2.4	$Spektrenberechnungsprogramme\ HAWKS,\ GEISA-PC,$							
					103						
	6.2	Motiva	tion für	eigene Kalibriermessungen	104						
	6.3	Aufbau einer Kalibriereinrichtung									
	6.4	Messablauf									
	6.5	Spektre	enaufbere	eitung	110						
	6.6	Auswei	rtung und	d Diskussion	112						
7	Mes	lesskampagnen l									
	7.1										
		7.1.1 Zielsetzung der Messkampagne									
		7.1.2		der Olefinanlage							
		713		se had univariater und multivariater Auswertung							

		7.1.4	Bewertung der Messkampagne	120						
	7.2	Messka	ampagne an einer mechanisch-biologischen Abbauanlage	122						
		7.2.1	Zielsetzung der Messkampagne	122						
		7.2.2	Aufbau der Anlage und Funktionsweise der Kompostierung	123						
		7.2.3	Auswertung der Messergebnisse	126						
			7.2.3.1 Miete III	126						
			7.2.3.2 Miete IV	131						
		7.2.4	Bewertung der Messkampagne	133						
3	Zusa	ammei	nfassung	134						
Anhang A										
Li	Literaturverzeichnis									