Absorption and Scattering of Light by Small Particles

CRAIG F. BOHREN

Associate Professor of Meteorology The Pennsylvania State University

DONALD R. HUFFMAN

Professor of Physics The University of Arizona

Physikaliarha Phylichiak

Facilibilitati 3 Technische Hour Lunds Darmstadt Hoorschuldtraße 4

D-64289 Darmstadt

pb 985

A Wiley-Interscience Publication
JOHN WILEY & SONS

New York

Chichester

Brisbane

Toronto

Singapore

Contents

PART 1—BASIC THEORY

Chapter 1. Introduction, 3

1.1	Physical Basis for Scattering and Absorption	3
1.2	Scattering by Fluctuations and by Particles	4
1.3	Physics of Scattering by a Single Particle	7
1.4	Collections of Particles	9
1.5	The Direct and Inverse Problem	9
	Notes and Comments	11
	Chapter 2. Electromagnetic Theory, 12	<u></u>
2.1	Field Vectors and the Maxwell Equations	12
2.2	Time-Harmonic Fields	14
2.3	Frequency-Dependent Phenomenological Coefficients	15
2.4	Spatial Dispersion	22
2.5	Poynting Vector	23
2.6	Plane-Wave Propagation in Unbounded Media	25
2.7	Reflection and Transmission at a Plane Boundary	30
2.8	Reflection and Transmission by a Slab	36
2.9	Experimental Determination of Optical Constants	41
2.10	The Analogy Between a Slab and a Particle	42
2.11	Polarization	44
	Notes and Comments	56
	Chapter 3. Absorption and Scattering by an Arbitrary Particle, 57	
3.1	General Formulation of the Problem	57
3.2	The Amplitude Scattering Matrix	61
3.3	Scattering Matrix	63
3.4	Extinction, Scattering, and Absorption	69
	Notes and Comments	81

Notes and Comments

	Chapter 4. Absorption and Scattering by a Sphere, 82	
4.1	Solutions to the Vector Wave Equations	83
4.2	Expansion of a Plane Wave in Vector Spherical Harmonics	89
4.3	The Internal and Scattered Fields	93
4.4	Cross Sections and Matrix Elements	101
4.5	Asymmetry Parameter and Radiation Pressure	119
4.6	Radar Backscattering Cross Section	120
4.7	Thermal Emission	123
4.8	Computation of Scattering Coefficients and Cross Sections Notes and Comments	126 129
	Chapter 5. Particles Small Compared with the Wavelength, 130	
5.1	Sphere Small Compared with the Wavelength	130
5.2	The Electrostatics Approximation	136
5.3	Ellipsoid in the Electrostatics Approximation	141
5.4	Coated Ellipsoid	148
5.5	The Polarizability Tensor	150
5.6	Anisotropic Sphere	152
5.7	Scattering Matrix	154
	Chapter 6. Rayleigh-Gans Theory, 158	
6.1	Amplitude Scattering Matrix Elements	158
6.2	Homogeneous Sphere	162
6.3	Finite Cylinder	163
	Notes and Comments	165
	Chapter 7. Geometrical Optics, 166	
7.1	Absorption and Scattering Cross Sections	166
7.2	Angular Distribution of the Scattered Light: Rainbow Angles	174
7.3	Scattering by Prisms: Ice Crystal Haloes	178
	Notes and Comments	180
	Chapter 8. A Potpourri of Particles, 181	
8.1	Coated Sphere	181
8.2	Anisotropic Sphere	184
8.3	Optically Active Particles	185
8.4	Infinite Right Circular Cylinder	194
8.5	Inhomogeneous Particles: Average Dielectric Function	213
8.6	A Survey of Nonspherical Particles, Regular and Irregular	219

222

CONTEN	ITS		

xiii

PART 2—OPTICAL PROPERTIES OF BULK MATTER

Cl 4 0	Classical	Tl	0-4!1	C	227
Chapter 9.	Ciassicai	i neories of	Optical	Constants.	ZZI

9.1	The Lorentz Model	228
9.2	The Multiple-Oscillator Model	244
9.3		247
9.4		251
9.5	The Debye Relaxation Model	259
9.6	General Relationship Between ϵ' and ϵ''	265
	Notes and Comments	267
	Chapter 10. Measured Optical Properties, 268	
10.1	Optical Properties of an Insulating Solid: MgO	268
10.2	Optical Properties of a Metal: Aluminum	271
10.3	Optical Properties of a Liquid: Water	273
10.4	A Comment on the Magnitude of k	279
10.5	Validity of Bulk Optical Constants in Small-Particle	
	Calculations	280
10.6	Summary of Absorption Mechanism and Temperature Effects	281
	Notes and Comments	283
	PART 3—OPTICAL PROPERTIES OF PARTICLES	
	Chapter 11. Extinction, 287	
11.1	Extinction = Absorption + Scattering	287
11.2	Extinction Survey	289
11.3	Some Extinction Effects in Insulating Spheres	295
11.4	Ripple Structure	300
11.5	Absorption Effects in Extinction	305
11.6	Extinction Calculations for Nonspherical Particles	310
11.7	Extinction Measurements	316
11.8	Extinction: A Synopsis	323
	Notes and Comments	324
	Chapter 12. Surface Modes in Small Particles, 325	
12.1	Surface Modes in Small Spheres	326
12.2	Surface Modes in Nonspherical Particles	342
12.3	Vibrational Modes in Insulators	357
12.4	Electronic Modes in Metals	369
	Notes and Comments	380

xiv

CONTENTS

Chapter 13. Angular Dependence of Scattering, 381

12.2 Taskishman of Management and Doutinle Dradies	381
13.2 Techniques of Measurement and Particle Production	389
13.3 Measurements on Single Particles	394
13.4 Some Theoretical and Experimental Results	397
13.5 Particle Sizing	403
13.6 Scattering Matrix Symmetry	406
13.7 Measurement Techniques for the Scattering Matrix	414
13.8 Some Results for the Scattering Matrix	419
13.9 Summary: Applicability of Mie Theory	427
Notes and Comments	428
Chapter 14. A Miscellany of Applications, 429	
14.1 The Problem of Optical Constants	430
14.1 The Problem of Optical Constants14.2 Atmospheric Aerosols	430 434
•	
14.2 Atmospheric Aerosols	434
14.2 Atmospheric Aerosols14.3 Noctilucent Clouds	434 448
14.2 Atmospheric Aerosols14.3 Noctilucent Clouds14.4 Rainfall Measurements with Radar	434 448 454
 14.2 Atmospheric Aerosols 14.3 Noctilucent Clouds 14.4 Rainfall Measurements with Radar 14.5 Interstellar Dust 	434 448 454
 14.2 Atmospheric Aerosols 14.3 Noctilucent Clouds 14.4 Rainfall Measurements with Radar 14.5 Interstellar Dust 14.6 Pressure Dependence of Intrinsic Optical Spectra 	434 448 454 457

APPENDIXES COMPUTER PROGRAMS

Appendix A. Homogeneous Sphere, 477

Appendix B. Coated Sphere, 483

Appendix C. Normally Illuminated Infinite Cylinder, 491

References, 499

Index, 521