Neural and Concurrent Real-Time Systems

The Sixth Generation

BRANKO SOUČEK

Department of Mathematics University of Zagreb

A Wiley-Interscience Publication

JOHN WILEY & SONS

Tech									
1	FA	CHE	sen	ER	CH II	NFU	11 W!	-5 H IP	
В		8	L	۱	0	Т	Н	Ε	K
Invent	27-	Nr ·		9	22	3			
	•				1	2	4		
Sachg	90	iete:		• • •	1	95	29		•••••
Cland	ner					. . .			

New York / Chichester / Brisbane / Toronto / Singapore

CONTENTS

.

,

Preface Acknowledgments	xiii xvii
PART I INTELLIGENT PROCESSES	
1. Signal Processing	3
 Introduction and Survey, 3 I.1. Amplitude and Latency Histograms, 4 I.2. Measuring Histograms, 8 I.3. Amplitude Correlation, 14 I.4. Interval Correlation, 23 I.5. Fourier Analysis and Power Spectra, 30 I.6. Some Typical Spectra, 34 I.7. Signal Processing versus Neural Mapping, 41 References, 41 	
2. Sampling, Quantizing, Servicing, and Queueing	43
Introduction and Survey, 43 2.1. Sampling, 43 2.2. Quantizing, 47 2.3. Analog-to-Digital Conversion, 51 2.4. Choice of Sampling and Quantizing Equipment, 59 2.5. Response Time, 61 2.6. Dead-Time Losses, 64	
	vii

 Real-Time Servicing and Queueing System, 69 References, 70

3. Mapping, Adaptation, and Learning in Neural Networks

Introduction and Survey, 71

- 3.1. Intelligence Granularity, 71
- 3.2. Field Computers, 73
- 3.3. Neural Computers, 74
- 3.4. The Kolmogorov Mapping Neural Network Existence Theorem, 77
- 3.5. Back-Propagation Network, 79
- 3.6. Alternating Projection Neural Network, 83
- 3.7. Stochastic Computing, 85
- 3.8. Probabilistic Logic Neuron Based on RAM, 89
- 3.9. High-Order Neural Units, 91
- 3.10. Learning Networks of Neurons with Boolean Logic, 94 References, 96

4. Neural Networks in Real-Time Applications

Introduction and Survey, 99

- 4.1. Gorman-Sejnowski Sonar Signal Processing, 99
- 4.2. Widrow-Winter Adaptive Noise Canceler, 104
- 4.3. EKG Processing on an ANZA Neurocomputer, 107
- 4.4. Speech Recognition, 109
- 4.5. Kohonen Phonetic Typewriter, 110
- 4.6. Image Analysis and Visual Recognition, 113
- 4.7. Reber-Lyman Rotation and Scale-Invariant Pattern Recognition Experiments, 114
- 4.8. Lightware-ANZA Manufacturing Inspection, 117
- 4.9. Reading Handprinted Numbers, 119
- 4.10. Nestor Learning System for Pattern Recognition, 119
- 4.11. Carpenter-Grossberg Adaptive Resonance Theory, 123
- 4.12. Process Control Applications, 125
- 4.13. Pole Balancing, 127
- 4.14. Process Control Based on ANZA and Graded Learning Network, 130
- 4.15. Intelligent Robots, 133
- 4.16. Miyamoto-Kawato-Setoyama-Suzuki Robotic Manipulator, 134 References, 137

5. Knowledge Chaining in Real-Time Applications

139

Introduction and Survey, 139

5.1. Feature Extractors and Genetic Selection Systems, 139

99

- 5.2. Rule-Based Representation of Knowledge, 141
- 5.3. Knowledge Frames, 143
- 5.4. Schema, Frame, BAM and FCM, 147
- 5.5. Learning in Rule-Based Systems, 150
- 5.6. Real-Time Knowledge Systems, Laning Recommendations, 152
- 5.7. A Control System Simulator, 155
- 5.8. Computer-Integrated Manufacturing (CIM), 156
- 5.9. Model-Based Reasoning, 158
- 5.10. The Factory Model, 159
- 5.11. The Factory Model Application, 160
- 5.12. Expert Systems in Engineering, 162
- 5.13. Železnikar Informational Logic, 166
- 5.14. From Fine to Coarse Intelligence Granularity, 167 References, 169

PART II INTELLIGENT SYSTEMS

6. Computers in Instrumentation and Process Control

Introduction and Survey, 175

- 6.1. Minicomputers and Microcomputers, 176
- 6.2. Programmed Input-Output Transfer, 178
- 6.3. Party Line for Programmed Input-Output, 180
- 6.4. Example of Programmed Input-Output Transfer, 185
- 6.5. Direct Memory Access, 186
- 6.6. Instrument and Control System Components, 187
- 6.7. Real-Time Clock, 190
- 6.8. Processes, Channels and Pools, 192
- 6.9. Synchronization, 193
- 6.10. Real-Time Operating Systems, Monitors and Schedulers, 194
- 6.11. Typical Small Process Control System: DIPS 85, 196
- 6.12. Typical Small Process Control Software: NIVO, 201
- 6.13. HP Computers for Real-Time and for Networking, 204
- 6.14. Micro VAX and Micro PDP-11, 215 References, 221

7. High-Speed Neural Chips and Systems

Introduction and Survey, 223

- 7.1. Garth Simulation-Communication Neural Chips, 223
- 7.2. Morton Intelligent Memory Chips, 227
- 7.3. Intelligent Memory Chips for Matrices with Hundreds of Columns, 230

223

- 7.4. DENDROS Neural Network Analog CMOS Circuits, 237
- 7.5. Mead-Mahowald Silicon Model of Early Visual Processing, 241
- 7.6. Delta Functional Architecture, 245 References, 249

8. Concurrent Chips and Languages

Introduction and Survey, 251

- 8.1. Transputer and OCCAM, 252
- 8.2. Real-Time Programming, 258
- 8.3. Generating Events at Regular Intervals, 261
- 8.4. Using Timers in ALTs, 263
- 8.5. Interrupts, 267
- 8.6. Polling, 268 References, 271

9. Concurrent System Design and Applications

Introduction and Survey, 273

- 9.1. Multiprocessor System Topology, 273
- 9.2. Distributed Operating System, 279
- 9.3. Transputers in Speech Processing, 280
- 9.4. Concurrent System for Hough Transform in Vision, 282
- 9.5. A Multiprocessor Architecture for Robot Arm Control, 283
- 9.6. Computer Graphics, 283
- 9.7. Three-Dimensional Transformation on the IMS T800, 289
- 9.8. Multiuser Flight Simulator, 293
- 9.9. Parallel Backtracking PROLOG Engine, 296
- 9.10. Control System of the Flexible Manufacturing Cell, 296 References, 298

10. Transputer-Based Computing Surface, Clusters, and Hyperclusters

Introduction and Survey, 299

- 10.1. Computing Surface, 300
- 10.2. The MEGAFRAME Module Family, 303
- 10.3. Computing Cluster, 312
- 10.4. Mühlenbein-Krämer-Peise-Rinn MEGAFRAME Hypercluster, 318

299

- 10.5. Operating System Kernel on the Chip, 331
- 10.6. Helios Operating System, 331
- 10.7. Problem-Adapted Transputer Structure, 336
- 10.8. Easy and Efficient Scalability, 338
- 10.9. Nuclear Magnetic Resonance Computer Tomograph, 344
- 10.10. Industrial Application, 344 References, 347

11. Market and Trends

Introduction and Survey, 349

- 11.1. Sixth-Generation Intelligent Systems, 350
- 11.2. Trends in Massively Parallel Computers, 351
- 11.3. Trends in RISC Processors, 356
- 11.4. Trends in VME Bus, 358
- 11.5. Neural Network Market, 362
- 11.6. Market for Neural and Concurrent Real-Time Systems, 363
- 11.7. Market for Intelligence and Sensation, 366
- 11.8. Nobel Laureates in Intelligence Research, 367
- 11.9. Noble Intelligence, 370 References, 371

LIST OF MANUFACTURERS

AUTHOR INDEX

SUBJECT INDEX

373

383