Finite Element Techniques for Fluid Flow

1

J. J. CONNOR, sc.D.

Professor of Civil Engineering

Massachusetts Institute of Technology, USA

C. A. BREBBIA, PH.D. Senior Lecturer in Civil Engineering University of Southampton, UK

> Technische Hochschule Darmstadt Fachbereich Mechanik

Bibliothek Inv.-Nr. BM 386/76

NEWNES-BUTTERWORTHS

LONDON BOSTON
Sydney Wellington Durban Toronto

Contents

1	Weighted Residual and Variational Methods	1
	 1.1 Basic definitions 1.2 Weighted residual methods 1.3 Weak formulations 1.4 Initial value problems *1.5 The case of quadratic functionals *1.6 Rayleigh-Ritz method *1.7 Subsidiary conditions 	
2	The Finite Element Technique	57
	 2.1 Localised functions 2.2 The finite element technique 2.3 Element matrices 2.4 System equations 2.5 Solution of the system 2.6 The general program 	
3	Interpolation Functions	100
	 3.1 Introduction 3.2 First-order continuity functions for triangular elements 3.3 First-order continuity functions for rectangular elements *3.4 Isoparametric elements *3.5 Second-order continuity functions for rectangular elements *3.6 Second-order continuity functions for triangular elements 	

CONTENTS

4	Basic Principles and Governing Equations of Fluid Mechanics	145
	 4.1 Eulerian and Lagrangian formulations: material derivative 4.2 Deformation rate measures 4.3 Equilibrium equations 4.4 The energy equation 4.5 Constitutive equations—Newtonian fluid 4.6 Navier-Stokes equations—incompressible Newtonian fluid 4.7 The principle of virtual power 4.8 Turbulence 	
5	Inviscid Fluids	174
	 5.1 Basic principles 5.2 Bernoulli's principle 5.3 The wave equation 5.4 Harmonic response of coastal waters 5.5 Stream function formulation *5.6 Cylindrical coordinates 	
6	Flow Through Porous Media	207
	 6.1 Principles of groundwater flow 6.2 Confined seepage problems 6.3 Problems involving free surfaces *6.4 Transient free surface flow *6.5 Confined aquifer analysis *6.6 Unconfined aquifer analysis 	
7	Shallow Water Circulation Problems	233
1,	7.1 Shallow water equations7.2 Finite element formulation7.3 Numerical integration schemes7.4 Lake circulation	
8	Dispersion Problems	258
	8.1 Introduction 8.2 The mass transfer equation	

308

		,
* 9.1	Introduction	
*9.2	Basic principles	
*9.3	Stream function—vorticity approach	
	Pressure and velocities approach	
	Free surface flow	

8.3 Diffusion problems8.4 Diffusion and convection problems*8.5 Nonlinear diffusion

Index

^{*}Topics which may be omitted in an introductory course without affecting continuity.