Computer-aided Techniques for the Design of Multilayer Filters

Heather M Liddell

Queen Mary College, London

Consultant Editor, HG Jerrard

Foreword by HA Macleod

Physikalische Bibliothek

Fachbereich 5 Technische Hochschule Darmstadt Hochschulsiraße 2 D-6100 Darmstadt

I/3322

Adam Hilger Ltd, Bristol

Contents

Fo	Foreword		ix	
Pre	face		xi	
1	Basic	Theory and Notation for Multilayer Filter Calculations		
	1.1	Notation for multilayer calculations	2	
	1.2	Reflectance and transmittance at an interface	3	
	1.3	Single film calculations	6	
	1.4	Multilayer calculations	9	
	1.5	Alternative formulation for multilayer calculations	12	
	1.6	Periodic multilayers and the classical stack	14	
	1.7	Effect of reflection from the back surface of the substrate	19	
	1.8	Graphical methods of calculation	24	

1.9 Calculation of field intensities inside a multilayer 25

2 Design of Filters by Analytical Techniques

2.1	Classification of the most important types of filter	30
2.2	Achromatised designs for antireflection coatings (Liddell	
	1966) – an illustration of the graphical method	34
2.3	The 'two effective interface' method	40
2.4	Design of broad band high-reflectance coatings	46
2.5	Use of equivalent index techniques in multilayer design	50

3 Application of Electrical Filter Design Techniques

3.1	Basic notation and definition of terms used in network	
	synthesis	55
3.2	Young's synthesis of antireflection coatings (1961)	57
3.3	Seeley's synthesis of interference filters	61
3.4	The multilayer circuit analogy method	64
3.5	Chen's iteration for the circuit analogy method	71

4 The Use of Merit Function Techniques in Multilayer Design

4.1	Baumeister's successive approximations method	75
4.2	Automatic design methods	78
4.3	The least squares method of Heavens and Liddell	80
4.4	Dobrowolski's method for completely automatic synthesis	
	of thin-film systems	87
4.5	Multilayer synthesis method of Pelletier, Klapisch and	
	Giacomo	94
4.6	Chen's turning value method	98
4.7	Reduction of polarisation effects in designs	102

5 Fourier Transform Methods of Synthesis

,

-- ---

5.1	The approximate vector method	109
5.2	The exact synthesis method	111
5.3	The thin-film synthesis program of Dobrowolski and Lowe	113

6 Theoretical Determination of Optical Constants of Thin Films

6.1	Formulae for reflectance and transmittance of a single	
	absorbing film on a transparent substrate	119
6.2	Use of the Hadley–Dennison curves for determining <i>n</i> and <i>k</i>	121
6.3	Bennett and Booty's method	122
6.4	Abelès and Thèye's method	123
6.5	Calculation of optical constants and thickness by	
	Ward <i>et al</i>	124
6.6	Other single wavelength methods	125
6.7	Hansen's theory for optical characterisation	125
6.8	Kramers Kronig analysis method	127
6.9	Determination of optical constants of weakly absorbing	
	thin films	130
6.10	Use of dispersion formulae	133

7 Thickness Monitoring Techniques and Methods for Analysing Errors in Monitoring

7.1	Computer simulation of errors in monitoring	143
7.2	Baumeister's sensitivity analysis method (1962)	145
7.3	Ritchie's analysis of random errors in narrow band filters	149
7.4	Investigation of errors in the turning value monitoring	
	method	149

7.5	'Dynamic' errors in monitoring	156
7.6	Monitoring systems which employ two or more wave-	
	lengths	161
7.7	Filters containing layers with unequal optical thicknesses	164

Appendix 1 A Brief Summary of Optimisation Techniques Useful for a Multilayer Filter Designer

A1.1	Introduction	168
A1.2	Methods for unconstrained optimisation	168
A1.3	Methods for minimising sums of squares of non-	
	linear functions	170
A1.4	Methods for constrained optimisation	172
A1.5	Use and availability of optimisation routines in program	
	libraries	173

Appendix 2 Computer Programs

A2.1	Program for calculating reflectance and transmittance of a	
	non-absorbing, non-dispersive film	175
A2.2	Specification of the N^2 scan automatic design program NSQ_2	180

References

•---

183

Index

189