Photons and Atoms

Introduction to Quantum Electrodynamics

Claude Cohen-Tannoudji Jacques Dupont-Roc Gilbert Grynberg

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

New York

Chichester

Brisbane 7

Toronto Sing

Singapore

Preface	 •	•	 •	• •				 	•		•	•		•	•	•					•	•			•	•		•		 X	VI	I
Introduction	 •	: .	 •	• •	 •	•	•	 	•	•	•	•		•	•	•	••	•	•.	:	•	•	 •	•	•	•	 •	•	•			1

I

CLASSICAL ELECTRODYNAMICS: THE FUNDAMENTAL EQUATIONS AND THE DYNAMICAL VARIABLES

Inti	roduction	5
A.	The Fundamental Equations in Real Space	7
	1. The Maxwell–Lorentz Equations	7
	2. Some Important Constants of the Motion	8
	3. Potentials—Gauge Invariance	8
B.	Electrodynamics in Reciprocal Space	11
	1. The Fourier Spatial Transformation—Notation	11
	2. The Field Equations in Reciprocal Space	12
	3. Longitudinal and Transverse Vector Fields	13
	4. Longitudinal Electric and Magnetic Fields	15
	5. Contribution of the Longitudinal Electric Field to the Total Energy, to	
	the Total Momentum, and to the Total Angular Momentum-a. The	
	Total Energy. b. The Total Momentum. c. The Total Angular Mo- mentum	17
	6. Equations of Motion for the Transverse Fields	21
C.	Normal Variables	23
	1. Introduction	23
	2. Definition of the Normal Variables	23
	3. Evolution of the Normal Variables	24
	4. The Expressions for the Physical Observables of the Transverse Field	
	as a Function of the Normal Variables—a. The Energy H_{trans} of the	
	Transverse Field. b. The Momentum P _{trans} and the Angular Momen-	
	tum J _{trans} of the Transverse Field. c. Transverse Electric and Magnetic	
	Fields in Real Space d The Transverse Vector Potential A (\mathbf{r}, t)	26

5. Similarities and Differences between the Normal Variables and the Ways Experies of a Spin 1 Particle in Presingeral Space	20
6. Periodic Boundary Conditions. Simplified Notation	31
••••••••••••••••••••••••••••••••••••••	
D. Conclusion: Discussion of Various Possible Quantization Schemes	33
1. Elementary Approach	33
2. Lagrangian and Hamiltonian Approach	34
Complement A ₁ —The "Transverse" Delta Function	
1. Definition in Reciprocal Space—a. Cartesian Coordinates. Transverse and Longitudinal Components. b. Projection on the Subspace of Transverse	26
2 The Europeing for the Terrorene Date Europein in Deal Space	30
2. The expression for the transverse Dena Function in Real space— a Regularization of $\delta^{\perp}(a)$ b Calculation of $g(a)$ c Evaluation of the	
Derivatives of $g(\mathbf{q}) = d$. Discussion of the Expression for $\delta_{ij}^{\pm}(\mathbf{q})$.	38
3. Application to the Evaluation of the Magnetic Field Created by a Magneti-	
zation Distribution. Contact Interaction	42
Complement B ₁ —Angular Momentum of the	
Electromagnetic Field. Multipole Waves	
``	
Introduction	45
1. Contribution of the Longitudinal Electric Field to the Total Angular	
1. Contribution of the Longitudinal Electric Field to the Total Angular Momentum	45
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum	45
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum Angular Momentum of the Transverse Field—a. J_{trans} in Reciprocal Space. b. J_{trans} in Terms of Normal Variables. c. Analogy with the Mean Value of 	45
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum Angular Momentum of the Transverse Field—a. J_{trans} in Reciprocal Space. J_{trans} in Terms of Normal Variables. c. Analogy with the Mean Value of the Total Angular Momentum of a Spin-1 Particle 	45 47
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum	45 47
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum	45 47 51
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum Angular Momentum of the Transverse Field—a. J_{trans} in Reciprocal Space. b. J_{trans} in Terms of Normal Variables. c. Analogy with the Mean Value of the Total Angular Momentum of a Spin-1 Particle Set of Vector Functions of k "Adapted" to the Angular Momentum— a. General Idea. b. Method for Constructing Vector Eigenfunctions for J² and J₂. c. Longitudinal Eigenfunctions. d. Transverse Eigenfunctions . Application: Multipole Wayes in Real Space—a Evaluation of Some 	45 47 51
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum Angular Momentum of the Transverse Field—a. J_{trans} in Reciprocal Space. b. J_{trans} in Terms of Normal Variables. c. Analogy with the Mean Value of the Total Angular Momentum of a Spin-1 Particle Set of Vector Functions of k "Adapted" to the Angular Momentum— a. General Idea. b. Method for Constructing Vector Eigenfunctions for J² and J_z. c. Longitudinal Eigenfunctions. d. Transverse Eigenfunctions Application: Multipole Waves in Real Space—a. Evaluation of Some Fourier Transforms. b. Electric Multipole Waves. c. Magnetic Multipole 	45 47 51
 Contribution of the Longitudinal Electric Field to the Total Angular Momentum Angular Momentum of the Transverse Field—a. J_{trans} in Reciprocal Space. b. J_{trans} in Terms of Normal Variables. c. Analogy with the Mean Value of the Total Angular Momentum of a Spin-1 Particle Set of Vector Functions of k "Adapted" to the Angular Momentum— a. General Idea. b. Method for Constructing Vector Eigenfunctions for J² and J_z. c. Longitudinal Eigenfunctions. d. Transverse Eigenfunctions . Application: Multipole Waves in Real Space—a. Evaluation of Some Fourier Transforms. b. Electric Multipole Waves. c. Magnetic Multipole Waves 	45 47 51 55

Complement C_I —Exercises

1.	H and P as Constants of the Motion	61
2.	Transformation from the Coulomb Gauge to the Lorentz Gauge	63
3.	Cancellation of the Longitudinal Electric Field by the Instantaneous	
	Transverse Field	64

VI

VII

70

4.	Normal Variables and Retarded Potentials	66
5.	Field Created by a Charged Particle at Its Own Position. Radiation	
	Reaction	68
6.	Field Produced by an Oscillating Electric Dipole	71
7.	Cross-section for Scattering of Radiation by a Classical Elastically Bound	
	Electron	74

II

,

LAGRANGIAN AND HAMILTONIAN APPROACH TO ELECTRODYNAMICS. THE STANDARD LAGRANGIAN AND THE COULOMB GAUGE

Inti	<i>roauction</i>	19
А.	Review of the Lagrangian and Hamiltonian Formalism 1. Systems Having a Finite Number of Degrees of Freedom— a. Dynamical Variables, the Lagrangian, and the Action. b. Lagrange's Equations. c. Equivalent Lagrangians. d. Conjugate Momenta and the Hamiltonian. e. Change of Dynamical Variables. f. Use of Com- plex Generalized Coordinates. g. Coordinates, Momenta, and Hamilto-	81
	nian in Quantum Mechanics	81
	Formalism and Quantization with Complex Fields	90
B.	The Standard Lagrangian of Classical Electrodynamics 1. The Expression for the Standard Lagrangian—a. The Standard Lagrangian in Real Space b. The Standard Lagrangian in Reciprocal	100
	 2. The Derivation of the Classical Electrodynamic Equations from the Standard Lagangian—a. Lagrange's Equation for Particles. b. The 	100
	 Lagrange Equation Relative to the Scalar Potential. c. The Lagrange Equation Relative to the Vector Potential. 3. General Properties of the Standard Lagrangian—a. Global Symmetry in Constraints and Relative to the Standard Lagrangian. 	103
	ables	105
C.	Electrodynamics in the Coulomb Gauge	111
	Lagrangian—a. Elimination of the Scalar Potential. b. The Choice of the Longitudinal Component of the Vector Potential	111 113

3.	Hamiltonian Formalism—a. Conjugate Particle Momenta. b. Conju-	
	gate Momenta for the Field Variables. c. The Hamiltonian in the	
	Coulomb Gauge. d. The Physical Variables	115
4.	Canonical Quantization in the Coulomb Gauge-a. Fundamental	
	Commutation Relations. b. The Importance of Transversability in	

 Conclusion: Some Important Characteristics of Electrodynamics in the Coulomb Gauge—a. The Dynamical Variables Are Independent.
 b. The Electric Field Is Split into a Coulomb Field and a Transverse Field. c. The Formalism Is Not Manifestly Covariant. d. The Interaction of the Particles with Relativistic Modes Is Not Correctly Described. 121

COMPLEMENT A_{II}—FUNCTIONAL DERIVATIVE. INTRODUCTION AND A FEW APPLICATIONS

1.	From a Discrete to a Continuous System. The Limit of Partial	
	Derivatives	126
2.	Functional Derivative	128
3.	Functional Derivative of the Action and the Lagrange Equations	128
4.	Functional Derivative of the Lagrangian for a Continuous System	130
5.	Functional Derivative of the Hamiltonian for a Continuous System	132

Complement B_{II} —Symmetries of the Lagrangian in the Coulomb Gauge and the Constants of the Motion

1.	The Variation of the Action between Two Infinitesimally Close Real	
	Motions	134
2.	Constants of the Motion in a Simple Case	136
3.	Conservation of Energy for the System Charges + Field	137
4.	Conservation of the Total Momentum	138
5.	Conservation of the Total Angular Momentum	139

COMPLEMENT C_{II}—Electrodynamics in the Presence of an External Field

1.	Separation of the External Field	141
2.	The Lagrangian in the Presence of an External Field—a. Introduction of a	
	Lagrangian. b. The Lagrangian in the Coulomb Gauge	142
3.	The Hamiltonian in the Presence of an External Field-a. Conjugate	
	Momenta. b. The Hamiltonian. c. Quantization	143

VШ

COMPLEMENT D_{II}—EXERCISES

An Example of a Hamiltonian Different from the Energy	146
From a Discrete to a Continuous System: Introduction of the Lagrangian	
and Hamiltonian Densities	147
Lagrange's Equations for the Components of the Electromagnetic Field in	
Real Space	150
Lagrange's Equations for the Standard Lagrangian in the Coulomb Gauge	151
Momentum and Angular Momentum of an Arbitrary Field	152
A Lagrangian Using Complex Variables and Linear in Velocity	154
Lagrangian and Hamiltonian Descriptions of the Schrödinger Matter Field	157
Quantization of the Schrödinger Field	161
Schrödinger Equation of a Particle in an Electromagnetic Field: Arbitrari-	
ness of Phase and Gauge Invariance	167
	An Example of a Hamiltonian Different from the Energy From a Discrete to a Continuous System: Introduction of the Lagrangian and Hamiltonian Densities Lagrange's Equations for the Components of the Electromagnetic Field in Real Space Lagrange's Equations for the Standard Lagrangian in the Coulomb Gauge Momentum and Angular Momentum of an Arbitrary Field A Lagrangian Using Complex Variables and Linear in Velocity Lagrangian and Hamiltonian Descriptions of the Schrödinger Matter Field Quantization of the Schrödinger Field Schrödinger Equation of a Particle in an Electromagnetic Field: Arbitrari- ness of Phase and Gauge Invariance

III QUANTUM ELECTRODYNAMICS IN THE COULOMB GAUGE

Inti	roduction	169
A.	 The General Framework	171 171
	System	171
	3. State Space	175
B.	Time Evolution	176
	1. The Schrödinger Picture	176
	2. The Heisenberg Picture. The Quantized Maxwell-Lorentz Equa- tions—a. The Heisenberg Equations for Particles. b. The Heisenberg Equations for Fields. c. The Advantages of the Heisenberg Point of	
	View	176
C.	Observables and States of the Quantized Free Field	183
	1. Review of Various Observables of the Free Field—a. Total Energy and Total Momentum of the Field. b. The Fields at a Given Point r of	
	Space. c. Observables Corresponding to Photoelectric Measurements	183
	2. Elementary Excitations of the Quantized Free Field. Photons— a. Eigenstates of the Total Energy and the Total Momentum.	

	b. The Interpretation in Terms of Photons. c. Single-Photon States. Propagation	186
	3. Some Properties of the Vacuum—a. Qualitative Discussion. b. Mean	200
	Values and Variances of the Vacuum Field. c. Vacuum Fluctuations 4. Quasi-classical States— a. Introducing the Quasi-classical States.	189
	b. Characterization of the Quasi-classical States. c. Some Properties of the Quasi-classical States. d. The Translation Operator for a and a^+ .	192
D.	The Hamiltonian for the Interaction between Particles and Fields 1. Particle Hamiltonian, Radiation Field Hamiltonian, Interaction	197
	Hamiltonian	197
	Bound Particles	198
	3. Selection Rules	199
	4. Introduction of a Cutoff	200
	Complement A _{III} —The Analysis of Interference Phenomena in the Quantum Theory of Radiation	
In	troduction	204
1.	A Simple Model	205
2.	Interference Phenomena Observable with Single Photodetection Signals— a. The General Case. b. Quasi-classical States. c. Factored States.	207
3	a. Single-Photon States	206
۶.	Signals—a. Quasi-classical States. b. Single-Photon States. c. Two- Photon States	209
4.	Physical Interpretation in Terms of Interference between Transition Am-	207
_		213
5.	Conclusion: The Wave–Particle Duality in the Quantum Theory of Radia-	213
5.	Conclusion: The Wave–Particle Duality in the Quantum Theory of Radia- tion	213 215

COMPLEMENT B_{III}—QUANTUM FIELD RADIATED BY Classical Sources

1.	Assumptions about the Sources	217
2.	Evolution of the Fields in the Heisenberg Picture	217
3.	The Schrödinger Point of View. The Quantum State of the Field at	
	Time <i>t</i>	219

Introduction	
 Preliminary Calculations Field Commutators—a. Reduction of the Expressions in Terms of D. b. Explicit Expressions for the Commutators. c. Properties of the Commu- 	222
tators	223
3. Symmetric Correlation Functions of the Fields in the Vacuum	227

Complement D_{III} —Exercises

1.	Commutators of $\mathbf{A}, \mathbf{E}_{\perp}$, and \mathbf{B} in the Coulomb Gauge	230
2.	Hamiltonian of a System of Two Particles with Opposite Charges Coupled	
	to the Electromagnetic Field	232
3.	Commutation Relations for the Total Momentum P with H_P , H_R , and H_I	233
4.	Bose-Einstein Distribution	234
5.	Quasi-Probability Densities and Characteristic Functions	236
6.	Quadrature Components of a Single-Mode Field. Graphical Representa-	
	tion of the State of the Field	241
7.	Squeezed States of the Radiation Field	246
8.	Generation of Squeezed States by Two-Photon Interactions	248
9.	Quasi-Probability Density of a Squeezed State	250

IV

OTHER EQUIVALENT FORMULATIONS OF ELECTRODYNAMICS

Inti	Introduction	
A.	How to Get Other Equivalent Formulations of Electrodynamics	255
	1. Change of Gauge and of Lagrangian	255
	2. Changes of Lagrangian and the Associated Unitary Transforma-	
	tion—a. Changing the Lagrangian. b. The Two Quantum Descrip-	
	tions. c. The Correspondence between the Two Quantum Descriptions.	
	d. Application to the Electromagnetic Field	256
	3. The General Unitary Transformation. The Equivalence between the	
	Different Formulations of Quantum Electrodynamics	262

В.	Simple Examples Dealing with Charges Coupled to an External Field 1. The Lagrangian and Hamiltonian of the System 2. Simple Gauge Change; Gauge Invariance—a. The New Description.	266 266
	 b. The Unitary Transformation Relating the Two Descriptions—Gauge Invariance 3. The Göppert-Mayer Transformation—a. The Long-Wavelength Approximation. b. Gauge Change Giving Rise to the Electric Dipole Interaction. c. The Advantages of the New Point of View. d. The 	267
	 4. A Transformation Which Does Not Reduce to a Change of Lagrangian: The Henneberger Transformation—a. Motivation. b. Determination of the Unitary Transformation. Transforms of the Various Operators. c. Physical Interpretation. d. Generalization to a Quantized Field: The Pauli-Fierz-Kramers Transformation 	269
_		215
C.	 The Power-Zienau-Woolley Transformation: The Multipole Form of the Interaction between Charges and Field	280
	 of Charges. b. The Displacement. C. Polarization Current and Magnetization Current	280
	 mation. b. The New Lagrangian. c. Multipole Expansion of the Interaction between the Charged Particles and the Field	286
	 Expressions for These Quantities. b. The Physical Significance of the New Conjugate Momenta. c. The Structure of the New Hamiltonian Quantum Electrodynamics from the New Point of View—a. Quanti- 	289
	 zation. b. The Expressions for the Various Physical Variables 5. The Equivalence of the Two Points of View. A Few Traps to Avoid 	293 296
D.	Simplified Form of Equivalence for the Scattering S-Matrix 1. Introduction of the S-Matrix	298 298
	 2. The S-Matrix from Another Fourt of View An Examination of the Equivalence	300 302
	Complement A _{IV} —Elementary Introduction to the Electric Dipole Hamiltonian	

/

1. The Electric Dipole Hamiltonian for a Localized System of Charges Coupled to an External Field—a. The Unitary Transformation Suggested

XII

	by the Long-Wavelength Approximation. b. The Transformed Hamiltonian.	
	c. The Velocity Operator in the New Representation	304
2.	The Electric Dipole Hamiltonian for a Localized System of Charges	
	Coupled to Quantized Radiation—a. The Unitary Transformation. b. Trans-	
	formation of the Physical Variables. c. Polarization Density and Displace-	
	ment. d. The Hamiltonian in the New Representation	307
3.	Extensions—a. The Case of Two Separated Systems of Charges. b. The	
	Case of a Ouantized Field Coupled to Classical Sources	312

Complement B_{IV} —One-Photon and Two-Photon Processes: The Equivalence between the Interaction Hamiltonians $\mathbf{A} \cdot \mathbf{p}$ and $\mathbf{E} \cdot \mathbf{r}$

Ini	troduction	316
1.	Notations. Principles of Calculations	316
2.	Calculation of the Transition Amplitudes in the Two Representations-	
	a. The Interaction Hamiltonian $\mathbf{A} \cdot \mathbf{p}$. b. The Interaction Hamiltonian $\mathbf{E} \cdot \mathbf{r}$.	
	c. Direct Verification of the Identity of the Two Amplitudes	317
3.	Generalizations—a. Extension to Other Processes. b. Nonresonant Pro-	
	cesses	325

Complement C $_{\rm IV}$ —Interaction of Two Localized Systems of Charges from the Power–Zienau–Woolley Point of View

Introduction	328
1. Notation	328
2. The Hamiltonian	329

$\begin{array}{c} \text{Complement } D_{IV} \\ \hline \\ \text{Transformation and the Poincaré Gauge} \end{array}$

Introduction	331
1. The Power-Zienau-Woolley Transformation Considered as a Gauge Change	
2. Properties of the Vector Potential in the New Gauge	332
3. The Potentials in the Poincaré Gauge	333

Complement E_{IV}—Exercises

1.	An Example of the Effect Produced by Sudden Variations of the Vector	
	Potential	336
2.	Two-Photon Excitation of the Hydrogen Atom. Approximate Results	
	Obtained with the Hamiltonians $\mathbf{A} \cdot \mathbf{p}$ and $\mathbf{E} \cdot \mathbf{r}$	338
3.	The Electric Dipole Hamiltonian for an Ion Coupled to an External Field	342
4.	Scattering of a Particle by a Potential in the Presence of Laser Radiation	344
5.	The Equivalence between the Interaction Hamiltonians $\mathbf{A} \cdot \mathbf{p}$ and $\mathbf{Z} \cdot (\nabla V)$	
	for the Calculation of Transition Amplitudes	349
6.	Linear Response and Susceptibility. Application to the Calculation of the	
	Radiation from a Dipole	352
7.	Nonresonant Scattering. Direct Verification of the Equality of the Transi-	
	tion Amplitudes Calculated from the Hamiltonians $\mathbf{A} \cdot \mathbf{p}$ and $\mathbf{E} \cdot \mathbf{r}$	356

V

INTRODUCTION TO THE COVARIANT FORMULATION OF QUANTUM ELECTRODYNAMICS

1111	<i>oauction</i>	301
A.	Classical Electrodynamics in the Lorentz Gauge	364
	1. Lagrangian Formalism—a. Covariant Notation. Ordinary Notation. b. Selection of a New Lagrangian for the Field. c. Lagrange Equations for the Field d The Subsidiary Condition e The Lagrangian Den-	
	sity in Reciprocal Space	364
	2. Hamiltonian Formalism—a. Conjugate Momenta of the Potentials. b. The Hamiltonian of the Field c. Hamilton-Iacobi Equations for	
	the Free Field	369
	3. Normal Variables of the Classical Field—a. Definition. b. Expansion of the Potential in Normal Variables. c. Form of the Subsidiary Condi-	
	tion for the Free Classical Field. Gauge Arbitrariness. d. Expression of	
	the Field Hamiltonian	371
B.	Difficulties Raised by the Quantization of the Free Field	380
	1. Canonical Quantization $-a$. Canonical Commutation Relations.	
	b. Annihilation and Creation Operators. c. Covariant Commutation Relations between the Free Potentials in the Heisenberg Picture	380
	 Problems of Physical Interpretation Raised by Covariant Quantization —a. The Form of the Subsidiary Condition in Quantum Theory. 	500
	b. Problems Raised by the Construction of State Space	383

Contents

C.	Covariant Quantization with an Indefinite Metric	387
	1. Indefinite Metric in Hilbert Space	387
	2. Choice of the New Metric for Covariant Quantization	390
	3. Construction of the Physical Kets	393
	4. Mean Values of the Physical Variables in a Physical Ket-a. Mean	
	Values of the Potentials and the Fields. b. Gauge Arbitrariness and Arbitrariness of the Kets Associated with a Physical State. c. Mean	
	Value of the Hamiltonian	396

D.	A Simple Example of Interaction: A Quantized Field Coupled to Two	400
	Fixed External Charges	400
	1. Hamiltonian for the Problem	400
	2. Energy Shift of the Ground State of the Field. Reinterpretation	
	of Coulomb's Law-a. Perturbative Calculation of the Energy Shift.	
	b. Physical Discussion. Exchange of Scalar Photons between the Two	
	Charges. c. Exact Calculation	401
	3. Some Properties of the New Ground State of the Field— a . The	
	Subsidiary Condition in the Presence of the Interaction. The Physical	
	Character of the New Ground State. b. The Mean Value of the Scalar	
	Potential in the New Ground State of the Field	405
	4. Conclusion and Generalization	407

Complement A_v —An Elementary Introduction to the Theory of the Electron–Positron Field Coupled to the Photon Field in the Lorentz Gauge

Introduction	
1. A Brief Review of the Dirac Equation—a. Dirac Matrices. b. The Dirac Hamiltonian. Charge and Current Density. c. Connection with the Covariant Notation d Energy Spectrum of the Free Particle. e. Negative-	
Energy States. Hole Theory	408
2. Quantization of the Dirac Field—a. Second Quantization. b. The Hamil- tonian of the Quantized Field. Energy Levels. c. Temporal and Spatial	
Translations	414
3. The Interacting Dirac and Maxwell Fields—a. The Hamiltonian of the Total System. The Interaction Hamiltonian. b. Heisenberg Equations for the Fields. c. The Form of the Subsidiary Condition in the Presence of	
Interaction	418

Introduction		424
1.	Transition from the Lorentz Gauge to the Coulomb Gauge in Relativistic Quantum Electrodynamics—a. Transformation on the Scalar Photons Yielding the Coulomb Interaction. b. Effect of the Transformation on the Other Terms of the Hamiltonian in the Lorentz Gauge. c. Subsidiary Condi- tion. Absence of Physical Effects of the Scalar and Longitudinal Photons. d. Conclusion: The Relativistic Quantum Electrodynamics Hamiltonian in the	
2.	Coulomb Gauge	425
	Effective Hamiltonian inside a Manifold. c. Discussion	432

COMPLEMENT C_v-Exercises

1.	Other Covariant Lagrangians of the Electromagnetic Field	441
2.	Annihilation and Creation Operators for Scalar Photons: Can One Inter-	
	change Their Meanings?	443
3.	Some Properties of the Indefinite Metric	445
4.	Translation Operator for the Creation and Annihilation Operators of a	
	Scalar Photon	446
5.	Lagrangian of the Dirac Field. The Connection between the Phase of the	
	Dirac Field and the Gauge of the Electromagnetic Field	449
6.	The Lagrangian and Hamiltonian of the Coupled Dirac and Maxwell	
	Fields	451
7.	Dirac Field Operators and Charge Density. A Study of Some Commuta-	
	tion Relations	454
Re	eferences	457
In	dex	459