An Introduction to
Powder Metallurgy

F. THÜMMLER

Dr.-Ing. habil., FIM
Professor Emeritus for Materials
University and Nuclear Research Centre
Karlsruhe

and

R. OBERACKER

Dr.-Ing., Central Laboratory
Institute for Ceramics in Mechanical Engineering
University of Karlsruhe

Series Editors
I. JENKINS
and
J.V. WOOD

THE INSTITUTE OF MATERIALS
Contents

Preface xi

1 Introduction (Dr I. Jenkins) 1

2 Powder Production Techniques 6
 2.1 Metal Powders 6
 2.1.1 Mechanical Processes 7
 2.1.1.1 Grinding and Milling 7
 - Principal Aspects 7
 - Equipment 9
 - Mechanical Alloying 15
 - Processing of Metal Chips 16
 2.1.2 Chemical Processes 30
 2.1.2.1 Reduction 30
 - Principal Aspects 30
 - Hydrogen Reduction 30
 - Hydrochemical Reduction 34
 - Carbon Reduction 37
 - Reduction by Metals 39
 2.1.2.2 Carbonyl Processes 41
 2.1.2.3 Hydride–Dehydride Processes 43
 2.1.2.4 Electrochemical Processes 44
 - Principal Aspects 44
 - Electrolysis of Aqueous Solutions 45
 - Fused Salt Electrolysis 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Transition Metal Carbide, Nitride, Boride, and Silicide Powders</td>
<td>49</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Carbide Powders</td>
<td>49</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Nitride, Boride and Silicide Powders</td>
<td>51</td>
</tr>
<tr>
<td>2.3</td>
<td>Ceramic Powders</td>
<td>52</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Principal Aspects</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Powders from Solutions</td>
<td>53</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Oxide Ceramic Powders</td>
<td>54</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Non-Oxide Ceramic Powders</td>
<td>57</td>
</tr>
<tr>
<td>2.4</td>
<td>Ultrafine Powders (Nanocrystals)</td>
<td>58</td>
</tr>
<tr>
<td>2.5</td>
<td>Whiskers and Short Fibres</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>Powder Properties and Characteristics</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>Terminology</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Particle Size Distribution</td>
<td>67</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Principal Aspects</td>
<td>67</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Common Types of Distribution Function</td>
<td>71</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Sampling of Powders</td>
<td>72</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Methods of Particle Size Analysis</td>
<td>74</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Sieve Analysis</td>
<td>75</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Microscopy</td>
<td>77</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Sedimentation Analysis</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>- Gravitational Sedimentation Analysis</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>- Centrifugal Sedimentation Analysis</td>
<td>83</td>
</tr>
<tr>
<td>3.2.4.4</td>
<td>Fluid Classification</td>
<td>85</td>
</tr>
<tr>
<td>3.2.4.5</td>
<td>Electrical Sensing Zone Analysis (Coulter Principle)</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4.6</td>
<td>Light Scattering and Diffraction Methods</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>- Theoretical Background</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>- Measurement Techniques</td>
<td>94</td>
</tr>
<tr>
<td>3.2.4.7</td>
<td>Other Methods</td>
<td>96</td>
</tr>
<tr>
<td>3.3</td>
<td>Specific Surface</td>
<td>97</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Surface Analysis by Permeametry</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Surface Analysis by Gas Adsorption</td>
<td>99</td>
</tr>
<tr>
<td>3.4</td>
<td>Technological Properties</td>
<td>101</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Powder Flowability</td>
<td>101</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Apparent and Tap Density</td>
<td>103</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Compactibility</td>
<td>105</td>
</tr>
<tr>
<td>3.5</td>
<td>Powder Impurities</td>
<td>106</td>
</tr>
<tr>
<td>3.6</td>
<td>Standards</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>108</td>
</tr>
</tbody>
</table>
4 Powder Conditioning and Heat Treatment 109
 4.1 Principal Aspects and Alloying Techniques 109
 4.2 Mixing, Blending, Segregation 112
 4.3 Agglomeration 113
 4.4 Heat Treatment 115
 Further Reading 116

5 Health and Safety 117
 5.1 Toxicity of Powders 117
 5.2 Pyrophoricity and Explosivity of Powders 119
 Further Reading 120

6 Compaction and Shaping 121
 6.1 Pressure Assisted Shaping 121
 6.1.1 Cold Compaction 121
 6.1.1.1 Fundamental Aspects 121
 6.1.1.2 Cold Pressing 124
 6.1.1.2.1 Principal Aspects 124
 6.1.1.2.2 Practice of Axial Cold Pressing 131
 - Compacting Sequence and Tooling 131
 - Compaction Presses 136
 - Limiting factors in Axial Pressing 136
 6.1.1.2.3 Practice of Isostatic Cold Pressing 137
 - Pressing Equipment 137
 - Tooling 137
 - Advantages, Disadvantages, Practical Applications 139
 6.1.1.3 Powder Injection Moulding 140
 6.1.1.3.1 Principal Aspects 140
 - Processing Principles 140
 - Feedstock Rheology 140
 - Base Powders 144
 - Binder Systems 144
 - Moulding 145
 - Debinding 146
 6.1.1.3.2 Practice of Powder Injection Moulding 147
 - Feedstock Preparation 147
 - Injection Moulding 148
 - Debinding and Sintering 149
 - Application Aspects 150
 6.1.1.4 Cold Powder Extrusion 151
 6.1.1.5 Metal Powder Rolling (Roll Compaction) 152
 6.1.2 Hot Compaction 154
 6.1.2.1 Fundamental Aspects 155
6.1.2.2 Practical Aspects of Axial Hot Pressing
- HIP Process Variants
- HIP Process Equipment
- Encapsulation Technology
- Containerless HIP
- Processing Sequence and Parameters
- Application of HIP

6.1.2.3 Practical Aspects of Isostatic Hot Pressing
- HIP Process Variants
- HIP Process Equipment
- Encapsulation Technology
- Containerless HIP
- Processing Sequence and Parameters
- Application of HIP

6.1.2.4 Powder Forging
- Ferrous Structural Parts
- Forging, Rolling and Extrusion of Billets

6.1.3 High Compaction Rate Processes
- Explosive Compaction
- Electrical Discharge Compaction
- Rotary Swaging

6.2 Pressureless Shaping
- Powder Filling and Vibration
- Slip Casting
- Electrophoretic Forming

6.3 Spray Forming

Further Reading

7 Sintering

7.1 Principal Aspects
- Scope and Definition
- Driving Force and Objective
- Stages of Sintering

7.2 Single Component Sintering
- Mechanisms of Material Transport
- Attempts to Define the Sintering Mechanism
- The Two-Particle Model
- The Three- and Multi-particle Model
- The Role of Dislocations and Decreased Neck Viscosity
- Experiments with Pore Models
- Powder Shrinkage Experiments
- Sintering Diagrams
- Sintering Phenomena in Practice
- Parameter Dependence and Properties Development
- Sintering Anomalies
- Activating and Inhibiting Influences
- Processing of Ultrafine (Nanosized) Powders
- Sintering of Covalent Materials
7.3 Multicomponent Sintering
 7.3.1 Principal Aspects
 7.3.2 Solid Phase Sintering
 7.3.2.1 Without Solid Solubility
 7.3.2.2 With Mutual Solid Solubility
 7.3.3 Liquid Phase Sintering
 7.3.3.1 Principal Aspects
 7.3.3.2 Stages and Kinetics
 7.3.3.3 Infiltration
 7.3.4 Reaction Sintering

7.4 Pressure Sintering (Hot Compaction) (cf. 6.1.2)

7.5 Special Sintering Procedures
 7.5.1 Rate Controlled Sintering (RCS)
 7.5.2 Induction Sintering
 7.5.3 Plasma and Microwave Sintering
 7.5.4 Cold Sintering

7.6 Experimental Investigation of Sintering Processes
 7.6.1 Dimensional Changes
 7.6.2 Mass and Physico-Chemical Changes

7.7 Computer Simulation and Modelling

Further Reading

8 Sintering Atmospheres and Equipment
 8.1 Functions and Reactions of Atmospheres
 8.2 Sintering Atmospheres in Practice
 8.3 Sintering Equipment

Further Reading

9 Porosity and Pore-Related Properties
 9.1 Definition and Measurement of Porosity and Pore Structures
 9.2 Mechanical Properties
 9.3 Physical Properties
 9.4 Characterisation of Permeable Sintered Materials

Further Reading

10 Production Routes in Practice

Further Reading

11 The Products of Powder Metallurgy and their Applications
 11.1 Iron and Steel
 11.1.1 Plain Iron
 11.1.2 Alloyed Steels
 11.1.2.1 Alloying Techniques
 11.1.2.2 Strengthening Mechanisms
An Introduction to Powder Metallurgy

11.1.2.3 Low Alloy Steels 269
11.1.2.4 High Alloy Steels 271

11.2 Copper and Copper Alloys 274

11.3 Nickel and Cobalt Alloys (Superalloys) 275

11.4 Light Metals 275
11.4.1 Aluminium Alloys 275
11.4.2 Titanium and Titanium Alloys 276
11.4.3 Beryllium and Magnesium 277

11.5 High Melting-Point Metals 277
11.5.1 Tungsten and Molybdenum 277
11.5.2 Tantalum and Niobium 278
11.5.3 Chromium 279

11.6 Hard Metals (Cemented Carbides) 280
11.6.1 Transition Metal Hard Phases 280
11.6.2 Conventional Hard Metals 282
11.6.3 Coated Hard Metals 283
11.6.4 Recent Developments 285
11.6.5 Applications 289

11.7 Magnetic Materials 289
11.7.1 Soft Magnetic Materials 290
11.7.2 Hard (Permanent) Magnetic Materials 291

11.8 High Porosity Materials 293

11.9 Composites 296
11.9.1 Principal Aspects 296
11.9.2 Cermets 298
11.9.3 Dispersion Strengthened Metals and Alloys 300
11.9.4 Fibre- and Whisker-Reinforced Metals 303
11.9.5 Infiltrated Alloys 304
11.9.6 Others 304

11.10 Advanced Ceramics 305
11.10.1 Principal Aspects 305
11.10.2 Magnetic and Electronic Ceramics (Functional Ceramics) 306
11.10.3 Structural (Engineering) Ceramics 310
11.10.4 Bioceramics 317

11.11 Intermetallics and Miscellaneous 317
 Further Reading 318

Index 320