Principles of Ocean Physics

JOHN R. APEL, PH.D.

Chief Scientist,
Milton S. Eisenhower Research Center
Applied Physics Laboratory
The Johns Hopkins University
Laurel, Maryland 20207 USA

1987

ACADEMIC PRESS
Harcourt Brace Jovanovich, Publishers
London Orlando San Diego New York
Austin Boston Sydney Tokyo Toronto
Contents

Preface v
Acknowledgments vii

Chapter One Physical Oceanography: An Overview

1.1 Introduction 1
1.2 The Evolution of Modern Physical Oceanography 3
Bibliography 12

Chapter Two Forcing Functions and Responses

2.1 Introduction 13
2.2 Forcing Functions On and In the Sea 13
2.3 Gravitational and Rotational Forces 14
2.4 Radiative, Thermodynamic, and Related Forces 15
2.5 Zonal and Meridional Variations 21
2.6 Wind Stress 28
2.7 The General Circulation of the Ocean 32
2.8 The Wind-Driven Oceanic Circulation 37
2.9 Pressure Forcing 41
Chapter Three Hydrodynamic Equations of the Sea

3.1 Introduction 61
3.2 The Convective Derivative and the Momentum Equation 62
3.3 Gravitational Forces 64
3.4 Effects of Spin 66
3.5 The Coriolis Force 70
3.6 More Gravity 81
3.7 Tidal Forces 82
3.8 Total Potential Caused by Gravity and Rotation 90
3.9 Internal Forces in a Viscous Fluid 90
3.10 Conservation Equations for Mass and Salinity 100
3.11 The Momentum Equation 105
3.12 Fluctuations, Reynolds Stresses, and Eddy Coefficients 110
3.13 Boundary Conditions in Fluid Dynamics 118

Chapter Four Thermodynamics and Energy Relations

4.1 Introduction 123
4.2 Molecular Structure of H₂O 124
4.3 Effects of Temperature, Salinity, and Pressure 127
4.4 Thermodynamics of Seawater 131
4.5 Additional Thermodynamic Equations 135
4.6 Heat Conduction Equation 140
4.7 Specific Volume and Salinity Equations 141
4.8 Equation of State 142
4.9 Combined Hydrodynamics and Thermodynamics 148
4.10 Energy Flow and Energy Equations 152
4.11 Total Energy Equations 157

Bibliography
Chapter Seven
Acoustical Oceanography

7.1 Introduction 343
7.2 Characteristics of Sound in the Sea 343
7.3 The Acoustic Wave Equation 345
7.4 The Speed of Sound 349
7.5 Mechanical Properties of Acoustic Waves 353
7.6 A Simple Solution to the Wave Equation 355
7.7 Ray Tracing and the Eikonal Equation 359
7.8 Propagation Loss 366
7.9 Reflection and Scattering from Ocean Surfaces 375
7.10 Reflection, Refraction, and Scattering at the Sea Floor 384
7.11 Reflection and Scattering by Bodies in the Water Column 389
7.12 Acoustics and Geophysical Fluid Dynamics 398
7.13 Underwater Noise 400
Bibliography 403

Chapter Eight
Electromagnetics and the Sea

8.1 Introduction 405
8.2 Maxwell's Equations and Constitutive Relations 406
8.3 Dielectric Function and Electrical Conductivity 409
8.4 Reflection at a Plane Surface 417
8.5 The Radar Equation for a Distributed Surface 426
8.6 Scattering of Electromagnetic Radiation 429
8.7 Radar Scatter and Geophysical Fluid Dynamics 448
8.8 Synthetic and Real Aperture Imaging Radars 462
8.9 The Wave Action Equation 476
8.10 Emission from the Sea Surface 487
8.11 Induced EMF's and Currents 501
Bibliography 508

Chapter Nine
Optics of the Sea

9.1 Introduction 511
9.2 Optical Fields and Parameters 513
9.3 Surface Illumination: Sun, Sky, and Artificial 521
9.4 Surface Interactions: Reflection, Scattering, and Refraction
9.5 Subsurface Interactions: Pure Seawater
9.6 Subsurface Interactions: Particles, Plankton, and Gelbstoffe
9.7 Fluorescence and Bioluminescence
9.8 Radiative Transfer Beneath the Sea
9.9 Ocean Color; Underwater Imaging
9.10 Remote Sensing of Optical Parameters
9.11 Optics and Geophysical Fluid Dynamics

Appendix One: Fundamental Physical Constants
Appendix Two: Astronomical and Geodetic Parameters
Appendix Three: Representative Values for Oceanic and Atmospheric Parameters
Appendix Four: Electrical Parameters
Appendix Five: Dimensionless Numbers for Fluids

Index