LYaPAS: A programming language for logic and coding algorithms

Edited by M. A. GAVRILOV and A. D. ZAKREVSKII

Academy of Sciences Moscow, USSR

Translated by Morton Nadler

BULL-General Electric Paris, France

Techi	nise FAC	:he :HB	H o Ere		nsch H II	NFC	e Di DRM	a rn ATI	istad K	It
В	I	В	L	ł	0	T	Н	E	К	
Inven	tar-	Nr.	:		16	9	4	•		-
Sachg	jebi	ete	:							
Stand	ort	:			•••••••		•••••			••

1969

ACADEMIC PRESS New York and London

CONTENTS

Translator's Foreword	v
Preface to the Russian Edition	ix

Part I: LYaPAS and Its Programming System

Section A: LYaPAS

Description of LYaPAS

A. D. Zakrevskii

1.	General Principles of LYaPAS	3
2.	Operands	8
3.	Operators of First-Level LYaPAS	13
4.	Examples of First-Level L-Programs	26
5.	Operations on Compound Variables	29
6.	Hierarchical Programming	30
7.	Simple Operations on Complexes	39
	References	46

Representation of Input Information to the LYaPAS Compiler

M. Ya. Tovshtein

1.	Introduction to PS-LYaPAS	47
2.	Coding L-Programs	4 9
3.	Initial Data for L-Programs	50

CONTENTS

4.	Checkout Mode	52
5.	Correction	54
6.	Warning	55
7.	Callup of the System Blocks	57
8.	Conclusion	57

Section B. The Automatic Programming System

The Programming System PS-LYaPAS

A. D. Zakrevskii, M. Ya. Tovshtein, and N. R. Toropov

1.	The Composition of the System	61
2.	Corrector	62
3.	Checkout Mode Blocks	63
4.	The Block for Canceling Primes	65
5.	The Blocks "?" and "??"	65
6.	Operation of <i>Executive</i>	66
7.	Subroutine Library	67
	References	67

Translator for High-Speed Computers

M. Ya. Tovshtein

1.	Structure of the Translator	68
2.	Selection of Next Code in the L-Program	72
3.	Taking Account of Constants and "Bad" Sentences	73
4.	Processing Operands	75
5.	Phrase Analysis	78
6.	The Synthesis of Machine Instructions	81
7.	The Synthesis of Transfer Operations	87
8.	Synthesis of Instructions for Nonstandard Phrases	90
9.	"Floating" Machine Program	93
10.	Conclusion	94
	References	95

The LYaPAS Compiler

A. D. Zakrevskii

1.	. The Compiler Functions	96
2.	. Description of the Compiler	98
3.	. The L-Program of the Compiler	100
	References	103

Detection of Syntactic Errors in L-Programs

N. A. Usacheva

1.	Search Algorithm for Syntactic Errors in an Arbitrary Language U	104
2.	The LYaPAS Syntax Table	105
3.	Search Algorithm for Syntactic Errors in L-Programs	114
	References	115

Checking Out L-Programs on URAL-1

A. D. Zakrevskii

1.	The Problem of Automatic Checkout and Two Types of Checkout	116
	Program	
2.	Restrictions of "URAL" LYaPAS	117
3.	Information that Can Be Expected in the Maximal Checkout Mode	118
4.	Fundamental Computation Mode	121
5.	Memory Allocation and Representation of Input Information	122
6.	Description of OPLU	125
7.	The OPLU Program	128
	Reference	128

Translator for URAL-1

N. R. Toropov

1.	Basic Operating Principles of the Translator	130
2.	Translator Operating Modes	131
3.	Memory Distribution during Translation and Preliminary Remarks	
	on the Description of the Blocks of TRALU	134
4.	Preparation for Translation	136
5.	The Analysis of L-Programs	141
6.	The Synthesis of Machine Instructions	146
7.	Blocks that Complete the Operation of TRALU	160
8.	Conclusion	163
	Appendix	163
	References	164

Part II: Applications

Section A: Abstract Problems in Synthesis Theory

Programming Boolean Computations

A. D. Zakrevskii

1.	The Hierarchy of Boolean Spaces	167
2.	Objects in Boolean Space and Certain Forms of Their Representation	172
	References	174

Optimal Coverage of Sets

A. D. Zakrevskii

1. Coverages of Sets	175
2. Some Ways to Find Optimal Coverages	177
3. Finding Irredundant Coverages	179
4. Finding the Shortest Coverage	183
5. Obtaining φ -Minimal Coverages	185
6. Obtaining a Single Shortest Coverage	187
7. An Approximation Method for Finding a Shortest Coverage	190
References	191
The Solution of Systems of Logical Equations	
A. D. Zakrevskii and A. Yu. Kalmykova	
1. Statement of the Problem	193
2. The Forms Used for Representing the Information	194
3. Simple Algorithms	195
4. Abbreviated Sifting	199
5. Systems of Logical Equations in Limited Vector Form	201
6. Simplification of Systems of Logical Equations in Interval Form	203
References	206
Testing for Identities in Boolean Algebra	
A. D. Zakrevskii	
1 Statement of the Problem and Various Interpretations	207
2. Basic Relations	209
3. Solution Algorithm	210
4. Example	211
5. L-Program	212
References	213
Section B. Structural Synthesis	
Section D. Solucional Symplesis	
Determination of the Connectivity of a Graph	
A. D. Zakrevskii	
Text	217
References	220
Algorithms for the Minimization of Boolean Functions	
Algorithms for the minimization of Doolean Functions	
V. G. Novoselov	
1. Some Definitions	222

2. Algorithm for the Minimization of Boolean Functions in the Interval Representation 223

 Algorithm for Simplification of the Interval Form of an Incompletely Defined Boolean Function Algorithm for the Minimization of Completely Defined Boolean Functions Program for Constructing a Set of Maximal Intervals of a Boolean Function About the Metaprogram References The Decomposition Problem for Boolean Functions L. Fadeev Algorithm for Decomposition of a Boolean Function According to a 	233 238 239 241 243
Prescribed Partition	244
2. Structural Relations in the Set of Solutions of the Decomposition	940
3 Complexity of the Algorithm for Finding the Lower Bound of a Set	240
of Solutions References	$257 \\ 258$
The Construction of Particular Minimal Normal Forms of Boolean Functions	
V. P. Didenko	
Text References	259 270
An Algorithm for Obtaining Factored Forms of Boolean Functions	
V. P. Didenko and V. Sh. Okudzhava	
Text References	271 281
Approximate Method for Obtaining Minimal Factored Forms of a Certain Clas	ss
V. I. Ostrovskii	
Text References	282 291
Realization of Boolean Functions by Threshold Elements	
E. A. Butakov, S. V. Bykova, and V. A. Vorob'ev	
1. The Properties of Threshold Functions	292
 Realization of a Boolean Function by a Single Threshold Element Realization of an Arbitrary Boolean Function by a Single-Row 	304
Threshold Network	340

350

An Algorithm for the Synthesis of Majority-Element Logical Circuits

V. L. Pavlov

1.	General Analysis of the Problem	352
2.	Multistep Algorithm for Finding an Approximate Solution	360
3.	Conclusion	377
	References	379

Section C: Investigation of Automata

Simulation of Switching Circuits

A. A. Utkin

1. Investigation of Automata on General-Purpose Computers	383
2. Representation of Switching-Circuit Structure	385
3. Models of the Elements	392
4. Preliminary Operations	398
5. Model of the Switching Circuit	401
6. Conclusion	404
References	405

Algorithms for State Minimization of a Discrete Automaton

Yu. V. Pottosin

1.	Some Methods for Minimization of the Number of States of a	
	Discrete Automaton	406
2.	Representing the Initial Information	408
3.	Algorithms for State Minimization	411
4.	Construction of the Equivalence Matrix for Outputs	414
5.	Obtaining a Chain Generated by a Given Pair of States	415
6.	Finding the Coordinates of the Unit Elements of a Matrix	416
7.	Finding the Implied Pairs of States	416
8.	Construction of the Compatibility Matrix	417
9.	Finding the Maximal Sets of Compatibles	420
10.	Finding a Closed Set of Sets of Compatibles	422
11.	Finding Sets of States Implied by a Given Set	426
12.	Construction of the Transitive Closure Matrix of a Binary Relation	428
13.	Choice of Single-Step Transformation of the Automaton with Respect	
	to an Information Criterion	428
14.	Choice of Single-Step Transformation of the Automaton for the	
	Criterion of Maximum Reduction	430
15	Transformation of the Output Matrix	431
16	Transformation of the Next-State Matrix	432
17	Obtaining the Next-State Matrix	436

CONTENTS	xix	
18. Diagonal Symmetrization of a Binary Matrix	437	
19. Transposed Binary Matrix	438	
References	438	

SAK-LYaPAS-A System of Coding Theory Algorithms in LYaPAS

G. P. Agibalov

1.	Purpose of the System SAK-LYaPAS	439
2.	Some Algorithms for the Solution of Problems in Group Codes	440
3.	Polynomial-Algebra and Galois-Field Calculations	444
4.	The Solution of Systems of Linear Equations in the Galois Field $GF(2^m)$	450
5.	Some Algorithms of the Theory of Cyclic Group Codes	452
6. Peterson's Algorithm for Bose-Chaudhuri Decoding		457
	References	460
Р	ROGRAM INDEX	461

THOULEAN	INDEA .	101
GENERAL	INDEX	469