

STUDIES IN SOVIET SCIENCE

**LASER-INDUCED
DISCHARGE
PHENOMENA**

Yu. P. Raizer

*Institute for Problems in Mechanics
Moscow, USSR*

Translated from Russian by

Albin Tybulewicz

Editor, Soviet Journal of Quantum Electronics

Edited by

George C. Vlases and Z. Adam Pietrzyk

*Aerospace and Energetics Research Program
and Department of Nuclear Engineering
University of Washington
Seattle, Washington*

CONSULTANTS BUREAU • NEW YORK AND LONDON

Contents

Introduction.....	1
-------------------	---

PART I

BREAKDOWN OF GASES BY OPTICAL-FREQUENCY RADIATION

Chapter 1. Fundamental Concepts and Elementary Theory.....	9
1. Two Optical Breakdown Mechanisms	9
2. Experimental Technique and First Measure- ments of Threshold Fields.....	10
3. Direct Ionization of Atoms by Radiation	14
3.1. The Tunnel and Multiphoton Photo- electric Effects	14
3.2. First Measurements of Multiphoton Ionization Probability	17
4. Increase of Electron Energy in the Field of an Electromagnetic Wave According to Classical Theory.....	18
4.1. Average Rate of Energy Increase	18
4.2. True Changes in Energy in Single Collisions and Direct Derivation of the Average Energy Increase.....	22
4.3. Relationship between the Conductivity and the Absorption of Electromagnetic Waves	26

4.4.	Conduction and Polarization Currents	27
	Plasma Permittivity	
4.5.	Bremsstrahlung Emitted as a Result of Collisions of Electrons with Atoms and Kirchhoff's Law	29
5.	Increase of Electron Energy in a Photon Field.	34
5.1.	Stochastic Nature of the Quantum Process	34
5.2.	Absorption and Stimulated Emission of Quanta in Collisions between Electrons and Atoms.	35
5.3.	Classical Limit	40
5.4.	Similarities between Quantum and Classical Theories and Multiphoton Bremsstrahlung Processes	44
6.	Avalanche Ionization and Breakdown	48
6.1.	Electron Energy Losses and Electron Losses	48
6.2.	Breakdown Criteria	53
6.3.	Threshold Fields	57
Chapter 2. Experiments on Gases of Mod- erately High Densities		63
7.	Influence of Various Parameters on Threshold Fields	64
7.1.	Pressure	64
7.2.	Frequency	73
7.3.	Dimensions of Focal Regions	77
7.4.	Pulses of Different Duration.	83
8.	Mixtures of Gases	84
8.1.	Penning Effect in Neon and Argon Mixtures	84
8.2.	Other Mixtures	89
9.	Ultrashort (Picosecond) Pulses.	90
10.	Simultaneous Action of Laser and Microwave Field Pulses	95
11.	Interaction of Laser Pulses with Ionized Gases and Nonlinear Absorption Effects	97
11.1.	Experimental Results	97
11.2.	Physical Causes of Plasma Bleaching and Darkening	100

Chapter 3. Transport Equation for an Electron Gas	103	J
12. Boltzmann Equation for an Electron Gas	103	
12.1. Electron Distribution Function	103	
12.2. Formulation of the Transport Equation	105	
12.3. Collision Integral	107	
13. Classical Equation for Electron Energy Spectrum	110	
13.1. Derivation of the Electron Energy Spectrum from the Transport Equation	110	
13.2. Expansion Parameter and Limits of Validity	115	
13.3. Inelastic Collisions and Diffusion Losses	116	
13.4. Conductivity and Permittivity	119	
14. Quantum Equation and Classical Limit	120	
14.1. "Wandering" along the Energy Axis	120	
14.2. Diffusion Approximation	123	
14.3. Classical Limit	126	
Chapter 4. Solution of Transport Equation and Calculations of Breakdown Fields	129	
15. Steady-State Distribution of Electrons in Subthreshold Fields Governed by Elastic Collisions	129	
15.1. Transport Equation and Elementary Theory	129	
15.2. Margenau and Druyvesteyn Distributions	133	←
16. Electron Avalanche and Ionization Frequency in Optical and Microwave Fields	135	
16.1. Formulation of the Simplified Problem	136	
16.2. Solution for Instantaneous Ionization of Excited Atoms	142	
16.3. Solution when Excited Atoms Are Not Ionized	143	
16.4. Static Field and Similarity Laws	147	
16.5. Influence of the Excitation of Molecular Vibrations	148	
16.6. Numerical Solutions of the Quantum and Classical Transport Equations	150	
16.7. Extremely High Optical Fields	153	

17.	Calculations of Threshold Fields	155
17.1.	Fast Ionization of Excited Atoms	155
17.2.	Considerable Excitation Losses	157
17.3.	Role of Ionization of Excited Atoms by Electron Impact	163
17.4.	Unsolved Problems	164
Chapter 5.	Rarefied Gases	167
18.	The Multiphoton Photoelectric Effect	167
18.1.	Experimental Results	167
18.2.	Calculation of Probabilities	173
18.3.	Comparison with Experimental Results	176

PART II

PROPAGATION OF DISCHARGES AND MAINTENANCE OF PLASMA BY ELECTROMAGNETIC FIELDS

19.	Mechanisms of Discharge Propagation and Analogy with Combustion	180
Chapter 6.	Principal Propagation Regimes and Their Occurrence in Laser- Frequency Fields	189
20.	Optical Detonation	189
20.1.	First Measurements of Velocity and Temperature	189
20.2.	Shock Adiabat of a Light-Absorption Wave	191
20.3.	Detonation and Superdetonation Regimes	197
20.4.	Limits of Detonation	199
20.5.	Possibility of Detonation at Other Frequencies	204
21.	Laser Spark after Primary Breakdown	206
22.	Breakdown Wave	212
23.	Forced Initiation of Laser Sparks and "Optical Deflagration"	219
23.1.	Experiments and Their Interpretation	219
23.2.	"Burning" of a Laser Beam	224
24.	Equilibrium Heat-Conduction Regime of the Slow Combustion Type	226
24.1.	General Formulation of the Problem	226

24.2. Formulation in the Limiting Cases of Weak and Strong Absorption	235
24.3. Limits and Velocities of Optical Deflagration	241
24.4. Lossless Wave.	251
24.5. Wave with Losses.	259
25. Supersonic "Superdetonation" Heat-Conduction Regime.	263
26. Radiative Heat-Exchange Mechanism.	265
26.1. Formulation of the Problem.	265
26.2. Application to Laser Sparks.	268
Chapter 7. Maintenance of a Dense Plasma by Fields of Various Frequencies	273
27. Continuously Burning Optical Discharges	274
27.1. Optical Plasma Generator	274
27.2. Estimate of Threshold for a Focused Beam	275
27.3. Experimental Results	279
28. High-Frequency Induction Discharges	284
28.1. Plasma Temperature	285
28.2. Influence of Frequency and Threshold of Discharge	293
29. Arcs and the Minimum Power Principle	296
29.1. Temperature and Current-Voltage Characteristic	296
29.2. Inadmissibility of General Use of the Minimum Power Principle	301
30. Contraction of DC Discharges due to Heat Removal by Walls	302
31. Microwave Discharges	306
31.1. Discharges Maintained by a Plane Electromagnetic Wave	307
31.2. Discharges in Waveguides	311
31.3. Discharges in Resonators	315
Chapter 8. Propagation of Discharges in Static, High-Frequency, and Micro- wave Fields	319
32. Ionization Waves in a Static Field Driven by Electronic Thermal Conductivity.	319

33.	High-Frequency Discharges in Gas Streams ..	324
33.1.	Normal Discharge Propagation	
	Velocity	326
33.2.	"Flame" Configuration in a Plasma	
	Torch.	329
34.	"Combustion" Processes in Waveguides	332
34.1.	Traveling Discharges in Air at	
	Atmospheric Pressure	332
34.2.	Microwave Plasmotrons	335
35.	Ionization Waves in Waveguides	337
35.1.	Mechanism Associated with Diffusion	
	of Resonance Radiation	337
35.2.	Difference between Mechanisms of	
	Propagation in Monatomic and Molec-	
	ular Gases	344
36.	Glow Discharges in Gas Streams.....	346
36.1.	Fast-Flow Lasers	346
36.2.	Diffusion Propagation Mechanism ..	347
36.3.	Turbulent Mixing Mechanism	350
	Literature Cited	353