The Design of Prestressed Concrete Bridges

Concepts and principles

Robert Benaim

Contents

.

Figures				
Ackr	Acknowledgements			
Disc	Disclaimer			
Intro	oduction	1		
1 The	1 The nature of design			
1.1	Design and analysis	4		
1.2	A personal view of the design process	5		
1.3	Teamwork in design	6		
1.4	The specialisation of designers	7		
1.5	Qualities required by a bridge designer	8		
1.6	Economy and beauty in design	9		
1.7	Expressive design	14		
1.8	Bridges as sculpture	19		
1.9	Engineering as an art form	23		
2 Basic	concepts	28		
2.1	Introduction	28		
2.2	Units	28		
2.3	Loads on bridge decks	28		
2.4	Bending moments, shear force and torque	29		
2.5	Limit states	32		
2.6	Statical determinacy and indeterminacy	33		
3 Rein	forced concrete	35		
3.1	General	35		
3.2	The historical development of reinforced concrete	35		
3.3	General principles of reinforced concrete	37		
3.4	Reinforced concrete in bending	40		
3.5	The cracking of reinforced concrete	47		
3.6	The exothermic reaction	51		

	<u> </u>
VIII	Contents

	3.7	The ductility of reinforced concrete	57
	3.8	Imposed loads and imposed deflections	58
	3.9	Creep and relaxation of concrete	60
	3.10	Truss analogy	61
	3.11	Strut-and-tie analogy	70
	3.12	Continuity between the concepts of bending and arching	
		action	77
4	Prestr	essed concrete	80
	4.1	Introduction	80
	4.2	A comparison between reinforced concrete and prestressed	
		concrete	84
	4.3	Pre-tensioning and post-tensioning	89
	4.4	Conclusion	90
5	Prestr	essing for statically determinate beams	91
	5.1	General	91
	5.2	Materials employed for the example	91
	5.3	Section properties	91
	5.4	Central kern and section efficiency	93
	5.5	Loads	95
	5.6	Bending moments, bending stresses and shear force	95
	5.7	Centre of pressure	96
	5.8	Calculation of the prestress force	97
	5.9	Table of stresses	100
	5.10	Non-zero stress limits	101
	5.11	Compressive stress limits	102
	5.12	Sign convention	103
	5.13	Arrangement of tendons at mid-span	103
	5.14	Cable zone	104
	5.15	The technology of prestressing	107
	5.16	Cable profile	111
	5.17	Losses of prestress	116
	5.18	The concept of equivalent load	120
	5.19	Internal and external loads	125
	5.20	Prestress effect on shear force	125
	5.21	Anchoring the shear force	126
	5.22	Deflections	126
	5.23	The shortening of prestressed members	128
	5.24	Forces applied by prestress anchorages	129
	5.25	Following steel	135
	5.26	The introduction of prestress forces	137
	5.27	Bonded and unbonded cables	137

6 Prestr	essing for continuous beams	139
6.1	General	139
6.2	The nature of prestress parasitic moments	139
6.3	Parasitic moments at the ULS	142
6.4	The effect of parasitic moments on the beam reactions	143
6.5	Concordant cables	144
6.6	Straight cables in built-in beams	144
6.7	Cable transformations	145
6.8	Control of prestress parasitic moments	145
6.9	Details of the sample bridge deck	146
6.10	Section properties	147
6.11	Comment on the accuracy of calculations	149
6.12	Dead and live loads	150
6.13	Bending moments	150
6.14	Considerations on the choice of tendon size	164
6.15	Calculating the prestress force	165
6.16	Prestress scheme 1	167
6.17	Prestress scheme 2	174
6.18	Non-zero stress limits	175
6.19	Very eccentric cross sections	177
6.20	Design of the parasitic moments	177
6.21	Modification of bending moments due to creep	179
6.22	Modification of bending stresses due to creep following	
	change of cross section	184
6.23	Bursting out of tendons	185
6.24	The anchorage of tendons in blisters	187
6.25	Checks at the ULS	187
7 Articu	alation of bridges and the design of substructure	191
7.1	General	191
7.2	Design parameters	191
7.3	Bearings: general design considerations	194
7.4	Mechanical bearings	194
7.5	Elastomeric bearings	197
7.6	Concrete hinges	198
7.7	Design of foundations	199
7.8	The design of piers	208
7.9	The articulation of decks with mechanical bearings	212
7.10	Deck on laminated rubber bearings	222
7.11	Piers built into the deck	223
7.12	Split piers	223
7.13	Integral bridges	226
7.14	Continuity versus statical determinacy	227
7.15	Examples of bridge articulation	231

	Contrate
v	CONTONIS
-	0011001100

•

8	The g	eneral principles of concrete deck design	238
	8.1	General	238
	8.2	Transverse bending	238
	8.3	Transverse distribution of live loads	240
	8.4	Material quantities and costs	243
	8.5	Choice of most economical span	248
9	The d	esign of bridge deck components	250
	9.1	General	250
	9.2	Side cantilevers	250
	9.3	Top slabs	264
	9.4	Bottom slabs	270
	9.5	Webs	278
	9.6	Diaphragms	294
	9.7	Deck drainage	303
	9.8	Waterproofing	306
	9.10	Expansion joints	307
10	Precas	st beams	308
	10.1	General	308
	10.2	Standard precast beams	308
	10.3	Customised precast beams	312
- 11	Solid	slabs, voided slabs and multi-cell box girders	327
	11.1	Slab bridges, general	327
	11.2	Reinforced concrete slab bridges	327
	11.3	Prestressed concrete slab bridges	328
	11.4	Solid slab portal bridges	333
	11.5	Voided slabs	340
	11.6	Case history: River Nene Bridge	344
	11.7	Multi-cell box girders	346
12	Ribbe	ed slabs	349
	12.1	General	349
	12.2	Behaviour of twin rib decks	351
	12.3	The use of diaphragms	355
	12.4	Proportioning of twin rib decks	357
	12.5	Ribbed slabs and skew bridges	362
	12.6	Heat of hydration effects on twin rib decks	362
	12.7	Prestress layout	365
	12.8	Substructure for twin rib bridges	365
	12.9	Construction technology	365
	12.10) The development of ribbed slabs	367

13 Box g	girders	369
13.1	General	369
13.2	Cast-in-situ construction of boxes	369
13.3	Evolution towards the box form	371
13.4	Shape and appearance of boxes	372
13.5	The number of webs per box	378
13.6	Number of boxes in the deck cross section	379
14 Cour	ter-cast technology for box section decks	386
14.1	General	386
14.2	Long line casting	387
14.3	Short line casting	388
15 The	construction of girder bridges	414
15.1	General	414
15.2	Cast-in-situ span-by-span construction of continuous beams	414
15.3	Precast segmental span-by-span erection	422
15.4	Cast-in-situ balanced cantilever construction	428
15.5	Precast segmental balanced cantilever construction	439
15.6	Progressive erection of precast segmental decks	458
15.7	Construction programme for precast segmental decks	459
15.8	Incremental launching	460
15.9	Prefabrication of complete spans	475
16 The	effect of scale on the method of construction	484
16.1	General	484
16.2	A bridge length of 130 m on four spans	484
16.3	A bridge length of 130 m on three spans	485
16.4	The bridge is 500 m long	487
16.5	A series of short bridges totalling typically 1,000 m	490
16.6	The bridge is 1,000 m long	491
16.7	The bridge is 2,000 m long	492
16.8	The bridge is 10,000 m long	494
17 The	design and construction of arches	498
17.1	General	498
17.2	Line of thrust	498
17.3	Unreinforced concrete and masonry arches	501
17.4	Flat arches	502
17.5	Reinforced concrete arches	503
17.6	Short-span reinforced concrete arches with earth fill	504
17.7	Longer span reinforced concrete arches supporting bridge	
	decks	509
17.8	Construction of arches	512

cii	Contents			
	17.9	Progressive collapse of multi-span arch bridges	516	
	17.10) Tied arches	516	
18	Cable	519		
	18.1	General	519	
	18.2	Extradosed bridge decks	519	
	18.3	Undertrussed bridges	521	
	18.4	Cable-stayed bridges	522	
	18.5	Stressed ribbon bridges	552	
	18.6	Steel cable catenary bridges	560	
	18.7	Flat suspension bridges	561	
	Аррен	ıdix	564	
	References		568	
	Index		572	

•

x

٠