INDUSTRIAL OPERATIONS RESEARCH W.J. FABRYCKY P.M. GHARE P.E. TORGERSEN Virginia Polytechnic Institute and State University ## CONTENTS | | PREFACE | İX | |---|--|----| | | part one INTRODUCTION 1 | | | 1 | Operations Research | | | | and the Management Process 2 | | | | 1.1 The Process of Want Satisfaction | 3 | | | 1.2 The Objectives of Organized Activity | 5 | | | 1.3 Alternative Courses of Action | 7 | | | 1.4 Effectiveness and Efficiency | 8 | | | 1.5 The Quantitative Approach to Decisions | 10 | | | 1.6 Applying Operations Research | 12 | | 2 | Models and Simulation | | | | in Operations Research 16 | | | | 2.1 A Classification of Models | 17 | | | 2.2 The Simulation Process | 19 | | | 2.3 Formulating and Manipulating the Model | 22 | | | 2.4 Control of the Solution | 24 | | | 2.5 The Application of Models | 25 | | | | | | 3 | Some Fundamentals of Probability and Statistics 30 | | |---|---|--| | | 3.1 Probability Concepts and Theory 3.2 Discrete Probability Distributions 3.3 Continuous Probability Distributions 3.4 Summary of Probability Distributions 3.5 Descriptive Statistics 3.6 Inferential Statistics 3.7 Regression and Correlation 3.8 Monte Carlo Analysis | 31
36
41
44
47
54
60 | | | part two ECONOMIC MODELS FOR PRODUCTION OPERATIONS 73 | | | 4 | Cost and Income Models for Production Processes 74 | | | | 4.1 The Production System 4.2 Classes of Production Costs 4.3 Break-Even Production Models 4.4 Break-Even Analysis Involving Price 4.5 The Production Function | 75
77
80
88
88 | | 5 | Interest, Depreciation, and Economic Equivalence 102 | | | | 5.1 The Time Value of Money 5.2 Interest Formulas 5.3 The Concept of Depreciation 5.4 Depreciation Models 5.5 Evaluating a Single Alternative 5.6 Evaluating Multiple Alternatives | 103
103
112
113
123 | | 6 | Models for Equipment Replacement 136 | | | | 6.1 Considerations Leading to Replacement 6.2 The Basic Replacement Model 6.3 The Optimum Replacement Interval 6.4 The MAPI Replacement Algorithm 6.5 Replacement Under Inflation and Increased Productivity 6.6 Replacements of Units that Fail | 13'
13:
14:
14:
14:
16: | | | part three MODELS FOR PRODUCTION AND PROJECT CONTROL 171 | | | 7 | Manufacturing Progress Models 172 | | | | 7.1 Manufacturing Improvements7.2 The Graphical Function | 17:
17: | | | Contents | / VII | |----|--|---------------------------------| | | 7.3 The Analytical Model7.4 Defining the Progress Function7.5 Applications of the Progress Function7.6 Other Forms of the Progress Function | 181
186
189
193 | | 8 | Models for Production Sequencing 200 | | | , | 8.1 Flow Shop Sequencing for Two Machines 8.2 Flow Shop Sequencing for Several Machines 8.3 The Job Shop Sequencing Problem 8.4 Comparison of Job Shop Sequencing Rules | 201
204
211
215 | | 9 | Models for Project Planning and Control 228 | | | | 9.1 Deterministic Project Control—CPM 9.2 An Example of Project Control with CPM 9.3 Probabilistic Project Control—PERT 9.4 An Example of Project Control with PERT 9.5 The Economy of Project Control | 229
231
235
237
239 | | | part four STATISTICAL MODELS
FOR QUALITY ASSURANCE 249 | | | 10 | Models for Statistical Quality Control 250 | | | | 10.1 The Concept of Statistical Control 10.2 Control Charts for Variables 10.3 Operating Characteristics of X Charts 10.4 Control Charts for Attributes | 251
255
262
266 | | 11 | Methods of Acceptance Sampling 282 | | | | 11.1 The Concept of Acceptance Sampling 11.2 Acceptance Sampling by Attributes 11.3 Acceptance Sampling by Variables 11.4 Systems of Acceptance Sampling Plans 11.5 The Economy of Acceptance Sampling | 283
288
301
304
308 | | | part five PROCUREMENT AND INVENTORY MODELS 315 | | | 12 | Deterministic Procurement and Inventory Models 316 | | | | 12.1 The Procurement and Inventory System 12.2 The Decision Environment 12.3 The Purchase Alternative 12.4 The Manufacture Alternative 12.5 Making the Source Decision 12.6 Models for Variable Lam Cost | 317
320
323
326
329 | | 12.7 Models for Finite Shortage Cost | 335 | |--|---| | Probabilistic Inventory Models 348 13.1 Monte Carlo Analysis of Inventory Flow 13.2 Expressions for Expected Values 13.3 The Distribution of Lead Time Demand 13.4 Expressions for Shortage Condition 13.5 The Minimum Cost Inventory Policies 13.6 Minimum Cost Policies for a Simplified System 13.7 A Single Period Inventory Model | 349
354
358
361
366
369
373 | | part six MODELS FOR WAITING-LINE OPERATIONS 379 | | | Deterministic Waiting-Line Models 380 | | | 14.1 The Waiting-Line System 14.2 The Decision Environment 14.3 Models for No Initial Waiting Line 14.4 A Model with an Initial Waiting Line 14.5 An Approximation for Total Waiting Time 14.6 A General Numerical Solution Method | 381
383
386
390
394
396 | | Probabilistic Waiting-Line Models 402 | | | 15.1 Monte Carlo Analysis of Waiting Lines 15.2 Single Channel Waiting-Line Derivations 15.3 The Distribution of Waiting Time 15.4 Multiple Channel Waiting-Line Derivations 15.5 Poisson Arrivals with Nonexponential Service 15.6 Finite Population Models 15.7 Finite Population Models and Maintenance 15.8 A General Solution Method | 403
407
413
417
419
423
427
432 | | part seven PROGRAMMING MODELS FOR OPERATIONS 439 | | | Distribution Models of Linear Programming 440 | | | 16.1 The Assignment Model16.2 The Traveling Salesman Problem16.3 The Transportation Model16.4 Vogel's Approximation Method | 441
448
454
463 | | The General Linear Programming Model 472 | 473 | | | Probabilistic Inventory Models 348 13.1 Monte Carlo Analysis of Inventory Flow 13.2 Expressions for Expected Values 13.3 The Distribution of Lead Time Demand 13.4 Expressions for Shortage Condition 13.5 The Minimum Cost Inventory Policies 13.6 Minimum Cost Policies for a Simplified System 13.7 A Single Period Inventory Model part six MODELS FOR WAITING-LINE OPERATIONS 379 Deterministic Waiting-Line Models 380 14.1 The Waiting-Line System 14.2 The Decision Environment 14.3 Models for No Initial Waiting Line 14.4 A Model with an Initial Waiting Line 14.5 An Approximation for Total Waiting Time 14.6 A General Numerical Solution Method Probabilistic Waiting-Line Models 402 15.1 Monte Carlo Analysis of Waiting Lines 15.2 Single Channel Waiting-Line Derivations 15.3 The Distribution of Waiting Time 15.4 Multiple Channel Waiting-Line Derivations 15.5 Poisson Arrivals with Nonexponential Service 15.6 Finite Population Models 15.7 Finite Population Models 15.8 A General Solution Method part seven PROGRAMMING MODELS FOR OPERATIONS 439 Distribution Models of Linear Programming 440 16.1 The Assignment Model 16.2 The Traveling Salesman Problem 16.3 The Transportation Model 16.4 Vogel's Approximation Method | | | Contents ix | |--|---------------| | 17.2 Maximizing by the Simplex Method | 480 | | 17.3 Minimizing by the Simplex Method | 484 | | 17.4 Degeneracy and Equality Constraints | 486 | | 17.5 Matrix Interpretation of Linear Programming | 491 | | 17.6 Duality in Linear Programming | 493 | | 17.7 The Revised Simplex Method | 495 | | Some Applications | | | of Dynamic Programming 506 | | | 18.1 The Concept of Dynamic Programming | 507 | | 18.2 A Capital Investment Problem | 511 | | 18.3 A Shipping Problem | 515 | | 18.4 A Procurement Problem | 518 | | 18.5 A Replacement Problem | 522 | | Appendices 531 | | | A Statistical Tables | 533 | | B Interest Tables | 543 | | C Progress Function Tables | 555 | | D Finite Queuing Tables | 559 | | E Selected References | 567 |