INTRODUCTION 1
General remarks, 1—Physical constants, 2—Units and conversion factors, 3

CHAPTER I: RÉSUMÉ OF THE ELEMENTS OF ATOMIC STRUCTURE 5
1. BOHR THEORY 5
Stationary energy states, 5—Radiation, 6—Terms, 8—Continuous spectra, 8

2. WAVE MECHANICS (QUANTUM MECHANICS) 9
Fundamental equations, 9—Physical interpretation of the Ψ function, 12—Orthogonality and normalization of eigenfunctions, 13—Perturbation theory, 13—Heisenberg’s uncertainty principle, 15—Momentum and angular momentum, 15—Space quantization, 17—Electron spin, 18—Emission and absorption of radiation, 18

3. ATOMS WITH SEVERAL ELECTRONS; VECTOR MODEL 22
Quantum numbers of the individual electrons, 22—The Pauli principle, 22—Quantum theoretical addition of angular momentum vectors, 24—Quantum numbers and angular momenta of the whole atom; term symbols, 26—Influence of a magnetic or electric field, 28—Selection rules, 28—Nuclear spin, 29

CHAPTER II: OBSERVED MOLECULAR SPECTRA AND THEIR REPRESENTATION BY EMPIRICAL FORMULAE ... 30
1. SPECTRA IN THE VISIBLE AND ULTRAVIOLET REGIONS 30
Coarse structure, 30—Fine structure, 42—Intensity distribution, 50

2. SPECTRA IN THE INFRARED REGION ... 53
Near infrared spectra, 53—Far infrared spectra, 57

3. RADIOFREQUENCY (MICROWAVE) SPECTRA 59
Microwave absorption, 59—Magnetic resonance spectra, 60

4. RAMAN SPECTRA ... 61
Nature of the Raman effect, 61—Large Raman displacements, 61—Small Raman displacements, 63

CHAPTER III: ROTATION AND VIBRATION OF DIATOMIC MOLECULES; INTERPRETATION OF INFRARED AND RAMAN SPECTRA 66
CONTENTS

1. THE RIGID ROTATOR .. 66
- The molecule as a rigid rotator, 66—Energy levels, 67—Eigenfunctions, 69—Spectrum, 70

2. THE HARMONIC OSCILLATOR 73
- The molecule as a harmonic oscillator, 73—Energy levels, 75—Eigenfunctions, 76—Spectrum, 79

3. COMPARISON WITH THE OBSERVED INFRARED SPECTRUM 81

- Classical theory of light scattering and of the Raman effect, 82—Quantum theory of the Raman effect, 85—Vibrational Raman spectrum, 86—Rotational Raman spectrum, 88—General remarks, 90

5. INTERPRETATION OF THE FINER DETAILS OF INFRARED AND RAMAN SPECTRA 90

(a) THE ANHARMONIC OSCILLATOR 90
- The molecule as an anharmonic oscillator, 90—Classical motion, 91—Energy levels, 92—Eigenfunctions, 93—Infrared spectrum, 94—Raman spectrum, 97—Vibrational frequency and force constant, 97—Continuous term spectrum and dissociation, 98—Mathematical representation of the potential curves, 101

(b) THE NONRIGID ROTATOR 103
- Energy levels, 103—Spectrum, 105

(c) THE VIBRATING ROTATOR 106
- Energy levels, 106—Eigenfunctions, 109—Infrared spectrum, 110—Raman spectrum, 114

(d) THE SYMMETRIC TOP .. 115
- The diatomic molecule as a symmetric top, 115—Angular momenta, 116—Energy levels, 117—Eigenfunctions, 118—Infrared spectrum, 119—Raman spectrum, 121

(e) THERMAL DISTRIBUTION OF QUANTUM STATES; INTENSITIES IN ROTATION-VIBRATION SPECTRA 121
- Vibration, 122—Rotation, 124

(f) SYMMETRY PROPERTIES OF THE ROTATIONAL LEVELS 128
- Positive and negative rotational levels, 128—Symmetric and antisymmetric rotational levels for homonuclear molecules, 130—Influence of nuclear spin, 133—Influence of nuclear statistics, 135—Ortho and para modifications, 139—Isotopic molecules, 141

(g) ISOTOPE EFFECT ... 141
- Vibration, 141—Rotation, 143

CHAPTER IV: ELEMENTARY DISCUSSION OF ELECTRONIC STATES AND ELECTRONIC TRANSITIONS 146

1. ELECTRONIC ENERGY AND TOTAL ENERGY 146
- Electronic energy and potential curves; stable and unstable molec-
CONTENTS

2. VIBRATIONAL STRUCTURE OF ELECTRONIC TRANSITIONS

General formulae, 151—Examples; graphical representation, 153—Absorption, 155—Excitation of single progressions in emission, 158—Sequences (diagonal groups), 159—Vibrational analysis, 161—Isotope effect, 162—Applications of the isotope effect, 165

3. ROTATIONAL STRUCTURE OF ELECTRONIC BANDS

General relations, 168—The branches of a band, 169—Band-head formation; shading (degrading) of bands, 171—Combination relations and evaluation of the rotational constants for bands without Q branches, 175—Combination differences and evaluation of rotational constants for bands with Q branches, 183—Determination of the band origins (zero lines), 185—Determination of the numbering in the branches of incompletely resolved bands, 189—The picking out of branches, 191—Isotope effect, 192

4. INTENSITIES IN ELECTRONIC BANDS

(a) Intensity Distribution in the Vibrational Structure

(b) Intensity Distribution in the Rotational Structure

1Σ—1Σ transitions, 204—Other transitions, 207—Intensity alternation, 209—Wood's resonance series, 210

CHAPTER V: FINER DETAILS ABOUT ELECTRONIC STATES AND ELECTRONIC TRANSITIONS

1. CLASSIFICATION OF ELECTRONIC STATES; MULTIPLET STRUCTURE

Orbital angular momentum, 212—Spin, 214—Total angular momentum of the electrons; multiplets, 214—Symmetry properties of the electronic eigenfunctions, 217

2. COUPLING OF ROTATION AND ELECTRONIC MOTION

(a) Hund's Coupling Cases

Hund's case (a), 219—Hund's case (b), 221—Hund's case (c), 224—Hund's case (d), 225—Hund's case (e), 226

(b) Uncoupling Phenomena

A-type doubling, 226—Transition from case (b) to case (d) (L uncoupling), 229—Transition from case (a) to case (b) (spin uncoupling, 231—Transition from case (b) to case (c), 237

(c) Symmetry Properties of the Rotational Levels

Σ states, 237—Π, Δ, ... states, 239
3. Types of Electronic Transitions

(a) Selection Rules

- General selection rules, 240
- Selection rules holding for case (a) as well as case (b), 241
- Selection rules holding only in case (a), 242
- Selection rules holding only in case (b), 244
- Selection rules holding only in case (c), 244
- Selection rules holding only in case (d), 244
- More general cases, 245

(b) Allowed Electronic Transitions

- Notation, 245
- Allowed transitions:
 - \(1 \Sigma - 1 \Sigma\) transitions, 245
 - \(2 \Sigma - 2 \Sigma\) transitions, 247
 - \(3 \Sigma - 3 \Sigma\) transitions, 250
 - \(1 \Pi - 1 \Sigma\) transitions, 251
 - \(1 \Sigma - 1 \Pi\) transitions, 256
 - \(2 \Pi - 2 \Pi\) transitions, 257
 - \(3 \Pi - 3 \Pi\) transitions, 264
 - \(3 \Sigma - 3 \Pi\) transitions, 265
 - \(1 \Pi - 1 \Pi\) transitions, 266
 - \(2 \Pi - 2 \Pi\) transitions, 268
 - \(3 \Pi - 3 \Pi\) transitions, 271
 - \(1 \Pi - 1 \Pi\) transitions of higher multiplicity, 272
 - \(2 \Pi - 2 \Pi\) transitions of higher multiplicity, 273
 - \(3 \Pi - 3 \Pi\) transitions of higher multiplicity, 277
 - \(1 \Pi - 1 \Pi\) transitions of higher multiplicity, 278
 - \(2 \Pi - 2 \Pi\) transitions of higher multiplicity, 279
 - \(3 \Pi - 3 \Pi\) transitions of higher multiplicity, 280

(c) Forbidden Electronic Transitions

- Violation of approximate selection rules, 275
- Quadrupole and magnetic dipole radiation, 277
- Enforced dipole radiation, 280

4. Perturbations

- Observed phenomena, 280
- General considerations, 282
- Selection rules for perturbations, 284
- Rotational perturbations, 286
- Vibrational perturbations, 292
- Intersection of potential curves and the non-crossing rule, 295

5. Zeeman Effect and Stark Effect

- General remarks on the splitting of molecular energy levels in a magnetic field, 298
- The Zeeman splitting of \(1 \Sigma\) states, 300
- Zeeman effect in Hund's case (a), 300
- Zeeman effect in Hund's case (b), 303
- Other cases, 304
- Polarization of resonance fluorescence, 305
- Magnetic rotation spectra, 306
- Stark effect, 307

6. Hyperfine Structure

- Hyperfine structure without field, 308
- Zeeman effect of hyperfine structure, 311

CHAPTER VI: BUILDING-UP PRINCIPLES, ELECTRON CONFIGURATIONS, AND VALENCE

1. Determination of the Term Manifold from the States of the Separated Atoms

- Unlike atoms, 316
- Like atoms, 320

2. Determination of the Term Manifold from the States of the United Atom

- Unlike atoms, 322
- Like atoms, 322
CONTENTS

3. **Determination of the Term Manifold from the Electron Configuration**

- (a) Quantum Numbers of the Individual Electrons
 - Single electron in an axially symmetric electric field, 323—Several electrons, 331
- (b) The Pauli Principle in the Molecule
- (c) Derivation of the Term Type (Species) from the Electron Configuration in Russell-Saunders Coupling
 - Terms of non-equivalent electrons, 333—Terms of equivalent electrons, 335—Electron configurations with equivalent and non-equivalent electrons, 336—Like atoms, 337
- (d) Derivation of the Term Type (Species) for Other Types of Coupling
 - \((\omega,\omega)\) coupling, 337—\((\Omega,\omega)\) coupling, 338—Other types of coupling, 338
- (e) Term Manifold of the Molecule, Examples
 - General considerations, 338—\(\text{H}_2\) and the hydrides, 339—Molecules with nuclei of equal charge, 344—Other molecules, 346

4. **Stability of Molecular Electronic States; Valence**

- (a) Homopolar Binding (Atomic Binding)
 - Treatment of the \(\text{H}_2\) molecule according to Heitler and London, 350—Generalization of the Heitler-London theory for more complicated cases, 354—Theory of bonding and antibonding electrons for equal nuclear charges, 359—Unlike nuclear charges, 367
- (b) Heteropolar Binding (Ionic Binding)
 - Ionic molecules, 373—Transition cases, 374—Ionicity and polarity, 375
- (c) Van der Waals Binding

5. **Intensities of Electronic Transitions**

General formulae, 382—Rydberg transitions, 383—Charge-transfer spectra, 384—Other sub-Rydberg transitions, 385

CHAPTER VII: CONTINUOUS AND DIFFUSE MOLECULAR SPECTRA: DISSOCIATION AND PREDISSOCIATION

1. **Continuous Spectra and Band Convergence Limits: Dissociation of Diatomic Molecules**

- (a) Absorption
 - Ionization continua, 387—Dissociation continua, 388—Upper state continuous, 388—Lower state or both lower and upper state continuous, 394
- (b) Emission
 - Upper state continuous (molecule formation in a two-body collision), 400—Lower state continuous, 402—Both upper and lower state continuous, 405
CONTENTS

2. DIFFUSE MOLECULAR SPECTRA, PREDISSOCIATION, AND RELATED TOPICS. 405

(a) General Discussion of Spontaneous Radiationless Decomposition Processes
 The Auger process, 405—Passage through potential barriers, 408

(b) Radiationless Decomposition Processes in the Molecule
 Diffuseness of the bands, 410—Photochemical decomposition,
 411—Breaking-off of bands, 412—Different types of predissociation, 413—Preionization, 414—Inverse predissociation, 414—Accidental predissociation, 415

(c) Selection Rules for Predissociation
 Kronig's selection rules, 416—Forbidden predissociations, 419—Preionization, 419

(d) The Franck-Condon Principle in Predissociation
 Case I of predissociation, 420—Case III (predissociation by rotation); effective potential curves, 425—Influence of rotation in case I, 430

(e) Pressure Effects in Predissociation
 Induced predissociation, 432—Suppression of breaking-off by pressure, 433

(f) Other Diffuse Molecular Spectra

3. DETERMINATION OF HEATS OF DISSOCIATION 437

(a) Determination of Dissociation Limits
 (1) Band convergences, 438—(2) Extrapolation to convergence limits, 438—(3) Long-wave-length limit of an absorption continuum, 441—(4) Predissociation limits, 442—(5) Excitation of atomic fluorescence, 443—(6) Photodissociation, 443—(7) Chemiluminescence, 443

(b) Determination of the Dissociation Products

(c) Examples
 O_{2}, 446—N_{2}, 449

CHAPTER VIII: EXAMPLES, RESULTS, AND APPLICATIONS 451

1. ENERGY LEVEL DIAGRAMS; MOLECULAR CONSTANTS
 Empirical relations, 453—Ionization potentials, 459

2. APPLICATIONS TO OTHER FIELDS OF PHYSICS
 Nuclear physics, 460—Paramagnetism, 462—Collision processes, 463—Nature of the liquid and the solid state, 464—Determination of high temperatures, 465—Calculation of thermodynamic quantities, 466
CONTENTS

3. APPLICATIONS TO CHEMISTRY ... 472
 Free radicals, 472—Elementary chemical reactions in gases and chemiluminescence, 473—Photochemical primary processes, 477—Chemical equilibria, 479—Atomic heats of formation and related topics, 480

4. APPLICATIONS TO ASTROPHYSICS 482
 Absorption spectrum of the earth's atmosphere, 482—Emission spectrum of the earth's atmosphere, 484—Planetary atmospheres, 486—Comets, 488—Stellar atmospheres, 491—Interstellar space, 496

APPENDIX: VIBRATIONAL AND ROTATIONAL CONSTANTS FOR THE ELECTRONIC STATES OF ALL KNOWN DIATOMIC MOLECULES (TABLE 39) 501

BIBLIOGRAPHY .. 582

AUTHOR INDEX .. 617

SUBJECT INDEX .. 627