BIOCATALYSTS for FINE CHEMICALS SYNTHESIS

Collected Procedures out of PREPARATIVE BIOTRANSFORMATIONS, previously published by John Wiley & Sons as a loose-leaf manual from 1990 to 1997, with a review on the State-of-the-Art by S.M. Roberts

Editor-in-Chief S.M. Roberts

Associate Editors

G. Casy, M.-B. Nielsen, S. Phythian, C. Todd, K. Wiggins

Editorial Board

K. Faber, O. Ghisalba, S.E. Godtfredsen, H.L. Holland, J.B. Jones, R.J. Kazlauskas, H. Ohta, G.M. Whitesides, C.-H. Wong

JOHN WILEY & SONS

Chichester · New York · Weinheim · Brisbane · Toronto · Singapore

Contents

List o	of Contributors	xiii
Forev	vord	xix
Prefa	ce	xxiii
Grapi	hical Contents	xxvii
Pract	ical Guidelines	líií
Revie	ew: Biocatalysts — The State of the Art in 1996	lv
CHA	PTER 1 HYDROLYSIS AND ESTERIFICATION REACTIONS	1:0
Part 7	1 Preparation and Hydrolysis of Esters	1:1.1
1:1	Hydrolysis of meso-Diesters	1:1.1
	Pig liver esterase catalysed hydrolysis of a meso-diester	1:1.1
	Stereoselective hydrolysis of dimethyl 3-methylglutarate with PLE	1:1.7
	PLE catalysed hydrolysis of dimethyl 7β -hydroxy-3,3-dimethyl-2,4-dioxabicyclo[3.3.0]octane- 1β ,8 β -dicarboxylate	1:1.13
	PLE catalysed hydrolysis of a functionalized prochiral diester	1:1.18
	Desymmetrization of dimethyl <i>trans</i> -4,5-epoxy- <i>cis</i> -1,2-cyclohexanedicarboxylate using pig liver esterase	1:1.21
1:2	Kinetic Resolution by Ester Hydrolysis	1:2.1
	Kinetic resolution by hydrolysis of a benzyl ester using a protease	1:2.1
	A new strategy for the resolution of tertiary alcohols: lipase catalysed hydrolysis of a mixed oxalate diester	1:2.7
1:3	Hydrolysis and Esterification of Organometallic Substrates	1:3.1
	Kinetic resolution of α -hydroxystannanes by lipase catalysed transesterification	1:3.1

NOTE: Throughout the main chapters of this book, the page numbers are unchanged from the original looseleaf publication.

1:5	Hydrolysis of meso-Diacetates	1:5.1
	Enantioselective hydrolysis of 2-nitrocyclohexyl-1,3-diacetate with PLE	1:5.1
	Enantioselective hydrolysis of cyclopentene-1,3-diacetate using a lipase	1:5.6
	PFL catalysed hydrolysis of 2-methylpropan-1,3-diacetate	1:5.10
	Enantioselective hydrolysis of N-benzyloxycarbonyl-cis-2,6- (acetoxymethyl)piperidine using Aspergillus niger lipase	1:5.16
1:6	Kinetic Resolution by Hydrolysis of a Secondary Acetate	1:6.1
	Porcine pancreatic lipase (PPL) catalysed kinetic resolution of (±)-6- <i>exo</i> -acetoxy-7,7-dimethylbicyclo[3.2.0]hept-2-ene	1:6.3
	PFL catalysed hydrolysis of (\pm) -trans-2-bromocyclohexyl butyrate	1:6.9
	LPL catalysed kinetic resolution of 2-acetoxy-3-azidopropanal diethyl acetal	1:6.14
	Kinetic resolution by hydrolysis of (\pm) -1 β -acetoxy-4 β -(tert-butyldimethylsilyloxymethyl)cyclopent-2-ene with PFL	1:6.19
	Cholesterol esterase catalysed kinetic resolution of (\pm) -menthyl acetate	1:6.24
	Kinetic resolution by hydrolysis of bicyclo[3.2.0]hept-2-en-endo- 7-ol using immobilized <i>Mucor miehei</i> lipase	1:6.28
	Kinetic resolution by hydrolysis of 1-octyn-3-yl acetate using dried bakers' yeast	1:6.33
	Sequential kinetic resolution of trans-1,2-cyclohexanediol	1:6.37
	Lipase catalysed hydrolysis and acylation reactions for the resolution of 1-phenylethanol	1:6.41
	Lipase catalysed hydrolysis of 1-phenethyl acetate	1:6.45
	Lipase catalysed acylation of 1-phenylethanol	1:6.46
	Lipase catalysed hydrolysis of (-)-1-(2-thienyl)propyl acetate	1:6.49
	Enzymatic resolution of α -acetoxysulphides using Pseudomonas fluorescens lipase (PFL)	1:6.54
1:7	Regioselective Hydrolysis	1:7.1
	Enzymatic regioselective hydrolysis of a peracetylated furanose derivative	1:7.1
1:8	Acetate Hydrolysis in Organic Solvents	1:8.1
	Immobilized <i>Mucor miehei</i> lipase catalysed hydrolysis of 1-octyn-3-yl acetate	1:8.1
	Lipase catalysed enantioselective hydrolysis of 1-O-alkyl-2-O-acyl-3-O-tosylglycerol derivatives	1:8.5

Contents

1:9	Esterification of meso-Diols	1:9.1
	Lipase catalysed esterification of <i>cis</i> -cyclopent-2-en-1,4-diol	1:9.1
	PFL catalysed esterification of 2-methylpropan-1,3-diol using vinyl acetate	1:9.7
	Lipase catalysed esterification of meso-4,6-di-O-benzyl-inositol	1:9.11
1:10	Kinetic Resolution by Esterification of Secondary Alcohols	1:10.1
	PFL catalysed kinetic resolution of (\pm) -1 β -(triphenylmethyloxymethyl)cyclopent-2-en-4 β -ol by irreversible transesterification	1:10.1
	Lipozyme $^{\circledR}$ catalysed kinetic resolution of (\pm) -2-exo-bromo-3-endo-hydroxy-7,7-diphenylbicyclo[3.2.0]heptan-6-one, by esterification with vinyl acetate	1:10.7
	Resolution of 2-hydroxy-3-(1-naphthyloxy)propionitrile by lipase catalysed irreversible transesterification	1:10.15
	Resolution of unsaturated alcohols by lipase catalysed irreversible transesterification	1:10.22
	One-pot conversion of aldehydes to (S)-2-acetoxy nitriles via reversible cyanohydrin formation	1:10.30
	S-Ethyl thiooctanoate as a new acyl donor in the lipase catalysed resolution of secondary alcohols	1:10.40
	Pseudomonas fluorescens lipase catalysed kinetic resolution of racemic 9-(4-hydroxycyclopent-2-enyl)purines	1:10.48
	Lipase PS catalysed kinetic resolution of aryllactic esters by irreversible transesterification	1:10.54
	Lipase catalysed enantioselective esterification of 1-O-alkyl-3-O-tosylglycerol derivatives	1:10.60
	Dynamic kinetic resolution of hemiacetals	1:10.65
	Lipase catalysed enantioselective esterification of β -fluoroalcohols	1:10.70
	Cross-linked enzyme crystals (CLECs) catalysed resolution of (±)-trans-2-methylcyclohexanol by transesterification	1:10.77
1:11	Regioselective Esterification	1:11.1
	Lipase catalysed regioselective acetylation of ethyl- α -D-mannopyranoside using pancreatin	1:11.1
	PFL catalysed lactonization of methyl 16-hydroxyhexadecanoate	1:11.5
	Regioselective esterification using an immobilized lipase	1:11.8
	Lipase PS catalysed regioselective synthesis of 3'-carbonates from unprotected 2'-deoxynucleosides	1:11.12

Contents	viii

Part 2	Nitrile Hydrolysis	1.12.1
1:12	Regioselective Nitrile Hydrolysis by Enzymic Catalysis	1:12.1
	Selective nitrile hydrolysis using Nitrilase SP 361, monohydrolysis of a dinitrile	1:12.1
1:13	Nitrile Hydrolysis by Kinetic Resolution of a Secondary Nitrile	1:13.1
	Nitrilase SP 361 catalysed kinetic resolution of 2-phenyl- butyronitrile	1:13.1
Part 3	3 Amide Hydrolysis	1:14.1
1:14	Kinetic Resolution by Hydrolysis of <i>N</i> -Acylamino Acid	1:14.1
	Pig kidney aminoacylase (PKAA) catalysed kinetic resolution of <i>N</i> -acylaminobutyric acid	1:14.1
	Kinetic resolution by pig kidney aminoacylase (PKAA) catalysed hydrolysis of <i>N</i> -chloroacetylaminopent-4-enoic acid	1:14.8
1:15	Acylation of Amines and Hydrazines	1:15.1
	Chemoselective enzymatic hydrazinolysis of methyl acrylate	1:15.4
	Sequential enzymatic resolution of (\pm) -trans-cyclohexane-1,2-diamine	1:15.9
	Enzymatic resolution of amines and amino alcohols using pent-4-enoyl derivatives	1:15.14
Part 4	Preparation and Hydrolysis of Glycosides	
1:16	Formation of Glycoside Linkages	1:16.1
	The use of <i>E. coli</i> galactosidase in the formation of glycoside linkages	1:16.1
Part 5	5 Miscellaneous Examples	
1:17	Kinetic Resolution by Transesterification	1:17.1
	Resolution of racemic carboxylic acids <i>via</i> the lipase catalysed irreversible transesterification of vinyl esters	1:17.1
1:18	Kinetic Resolution of Epoxides by Hydrolysis	1:18.1
	Preparative access to both enantiomers of styrene oxide by hydrolysis of the racemate using Aspergillus niger or	4.40.4
4.40	Beauveria sulfurescens	1:18.1
1:19	Amidation of Diesters	1:19.1
4.00	Lipase catalysed amidation of glutamic acid diesters	1:19.1
1:20	Dynamic Resolution	1:20.1
	Lipase catalysed dynamic resolution of (±)-2-phenyl-4- <i>tert</i> -butyloxazolin-5(4H)-one	1:20.1
	Palladium and lipase catalysed dynamic resolution of allylic acetates	1:20.7

1:21	Crown Ethers as Regulators of Enzymatic Reactions	1:21.1
	Lipase catalysed enantioselective hydrolysis of 2-cyano-1-methylethyl acetate	1:21.1
1:22	Chemoselective Hydrolysis of Protecting Groups of Peptides	1:22.1
	Selective hydrolysis of peptide MEE ester group using papain and of <i>O</i> -acetyl protecting group using lipase WG from wheat germ	1:22.1
CHAF	PTER 2 REDUCTION REACTIONS	2:0
2:1	Reduction of Acyclic eta -Keto Esters	2:1.1
	Bakers' yeast reduction of ethyl acetoacetate	2:1.1
	Fermenting bakers' yeast reduction of ethyl-2-oxohexanoate	2:1.6
	Bakers' yeast reduction of a β -keto carboxylic acid salt	2:1.12
	Yeast reduction of ethyl 2-methylacetoacetate	2:1.19
	Fermenting yeast reduction of ethyl 2-allylacetoacetate	2:1.25
	Bakers' yeast reduction of ethyl acetoacetate in an organic solvent	2:1.30
2:2	Reduction of Cyclic β -Keto Esters	2:2.1
	Non-fermenting bakers' yeast reduction of a cyclic β -keto ester	2:2.1
2:3	Reduction of an Aliphatic Ketone	2:3.1
	Mortierella isabellina whole cell reduction of 7,7-dimethyl-bicyclo[3.2.0]hept-2-en-6-one	2:3.1
	Bakers' yeast reduction of an acyclic β -diketone	2:3.10
	Anti-Prelog reduction of methyl ketones using Yarrowia lipolytica	2:3.16
2:4	Reduction of Aromatic Ketones	2:4.1
	Mortierella isabellina catalysed whole cell reduction of 4-chromanone	2:4.1
2:6	Reduction Reactions using Isolated Enzymes	2:6.1
	Reduction of 2-keto acids catalysed by lactate dehydrogenases	2:6.1
	Reduction of potassium (E)-2-oxo-4-phenyl-3-butenoate using S -lactate dehydrogenase	2:6.10
	Reduction of disodium 5-methyl-2,4-dioxohexanoate using R-lactate dehydrogenase	2:6.14
2:7	Reduction of Carbon-Carbon Double Bonds	2:7.1
	Fermenting bakers' yeast reduction of α -methyl- β -(2-furyl)-acrolein	2:7.1
	Preparation of isopropyl (S)-3-oxocyclopentanecarboxylate by reduction of isopropyl 3-oxocyclopentene carboxylate using Geotrichum candidum	2:7.8

Contents

2:8	Reduction of Aromatic Nitro Compounds	2:8.1
	Bakers' yeast reduction of aromatic nitro compounds to aromatic amines	2:8.1
	Regioselective reduction of substituted dinitroarenes using bakers' yeast	2:8.9
	Bakers' yeast reduction of 2,4-dinitroanisole	2:8.11
	Regioselective reduction of 6,8-dinitroquinoline by bakers' yeast	2:8.14
2:9	Reduction Reactions using Immobilized Bakers' Yeast	2:9.1
	Immobilized bakers' yeast reduction of ethyl acetoacetate	2:9.1
2:10	Reduction of Phosphonates	2:10.1
	Bakers' yeast reduction of diethyl 2-oxoalkylphosphonates	2:10.1
2:11	Reduction of Steroid A Ring Double Bonds	2:11.1
	Reduction of Δ^4 -3-ketosteroids to 5α -dihydrosteroids using <i>Penicillium decumbens</i>	2:11.1
CHA	PTER 3 OXIDATION REACTIONS	3:0
3:1	Oxidation of Prochiral Diols	3:1.1
	Horse liver alcohol dehydrogenase (HLADH) catalysed oxidation of a <i>meso</i> -diol	3:1.1
3:2	Hydroperoxidation of Double Bonds	3:2.1
	Preparation of (13 <i>S</i>)-HODE <i>via</i> lipoxygenase catalysed peroxidation of linoleic acid	3:2.1
3:5	Hydroxylation of Double Bonds	3:5.1
	Microbial oxidation of toluene using Pseudomonas putida	3:5.1
	Asymmetric dihydroxylation of the remote double bond of geraniol	3:5.16
3:6	Sulphur Oxidation	3:6.1
	Enantioselective oxidation of methyl <i>p</i> -tolyl sulphide catalysed by chloroperoxidase	3:6.1
	Enantioselective oxidation of methyl p -tolyl sulphide catalysed by bakers' yeast	3:6.9
	Enantioselective oxidation of <i>para</i> -substituted benzyl methyl sulphides by <i>Helminthosporium</i> species NRRL 4671	3:6.22
	Enantioselective oxidation of sulphides catalysed by bovine serum albumin	3:6.27

X

3:7	Epoxidation Reactions	3:7.1
	Lipase catalysed synthesis of a peroxycarboxylic acid and its use in the epoxidation of cyclooctene	3:7.1
	'Synthetic enzymes'. Asymmetric epoxidation of chalcones mediated by polyamino acids in a triphasic system	3:7.5
	Epoxidation of enones mediated by polyamino acids in a non-aqueous medium	3:7.12
3:8	Hydroxylation of an Unactivated Methylene Group	3:8.1
	Conversion of 4-piperidinylacetophenone to 4-(4'-hydroxypiperidinyl)acetophenone by Beauveria sulfurescens	3:8.1
3:9	Oxidation of Arylamidoximes	3:9.1
	Oxidation of arylamidoximes by H_2O_2 and horseradish peroxidase in water	3:9.1
3:10	Microbial Oxidation of Allylic Alcohols	3:10.1
	Oxidation of piperonylic alcohol using Nocardia corallina	3:10.1
3:11	Hydroxylation of Steroids at Unactivated Carbon Centres	3:11.1
	Conversion of progesterone to 11β -hydroxyprogesterone and 14α -hydroxyprogesterone by <i>Curvularia lunata</i>	3:11.1
	Conversion of progesterone to 11α -hydroxyprogesterone by Rhizopus arrhizus, Rhizopus stolonifer and Aspergillus ochraceus	3:11.7
CHA	PTER 4 CARBON-CARBON BOND FORMING REACTIONS	4:0
4:1	Aldolase Reactions: FDP Aldolase	4:1.1
	Rabbit muscle aldolase (RAMA) catalysed preparation of 6-deoxy-6-chloro-p-fructose and 6-deoxy-6-chloro-L-sorbose from 3-chloro-2-hydroxy propanal and DHAP	4:1.1
4:2	Aldolase Reactions: Microbia! Aldolases	4:2.1
	L-Rhamnulose-1-phosphate aldolase catalysed aldol condensation with isobutyraldehyde	4:2.1
	L-Fuculose-1-phosphate aldolase catalysed aldol condensation with glycolaldehyde	4:2.7
	L-Threonine aldolase catalysed reaction in the preparation of β -hydroxy- α -amino acids	4:2.13
4:3	Acyloin Condensations	4:3.1
	Fermenting bakers' yeast catalysed acyloin condensation of benzaldehyde	4:3.1

xii

4:4	Condensation Reactions using Transketolase	4:4.1
	Transketolase catalysed synthesis of L-erythrulose	y 4:4.1
4:5	Cyanohydrin Formation	4:5.1
	Preparation of optically active cyanohydrins using oxynitrilase from almond meal	4:5.1
CHAI	PTER 5 CASE STUDIES	5:0
5:0	Comparison of Biocatalytic Routes to (S)-6-Heptyn-2-ol, a Synthon for Brefeldin A	5:0.1
5:1	A Comparison between the Use of <i>Mucor miehei</i> Lipase and <i>Candida cylindracea</i> in the Enantioselective Transesterification of Glycidic Esters	5:1.1
	Mucor miehei lipase enantioselection transesterification of methyl trans- β -phenyl glycidate with isobutyl alcohol	5:1.2
	Candida cylindracea lipase enantioselective transesterification of methyl trans-3-(4-methoxy phenyl)glycidate with octan-1-ol	5:1.9
5:2	Some Properties of Commercially Available Crude Lipase Preparations	5:2.1
	Tributyrin assay	5:2.5
	Olive oil assay	5:2.6
	p-Nitrophenyl palmitate assay	5:2.7
	Folin-Lowry method	5:2.8
	TCA precipitation	5:2.9
Index	•	1.1