ALUMINUM STRUCTURES

A Guide to Their Specifications and Design

J. Randolph Kissell Robert L. Ferry The TGB Partnership

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS, INC.

New York • Chichester • Brisbane • Toronto • Singapore

CONTENTS

I	INT	RODU	CTION		1
	1	What'	s In This I	Book?	3
	2	What	Is Alumin	um?	5
		2.1 2.2 2.3 2.4 2.5	Metal in Many Me Aluminur Aluminur Examples	Construction 5 etals From Which to Choose 7 m—The Metal of Choice 8 m Alloys 10 s of Aluminum Structures 13	
	3	Worki	ng With A	Aluminum	21
		3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 Coatings 3.2.1	Extrusions 21 Extrusions 21 Sheet and Plate 36 Castings 48 Forgings 51 Preformed Products 52 and Finishes 54 Mill Finish 54	
		3.3	3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 Erection	Anodized Finishes 55 Painted Finishes 58 Mechanical Finishes 59 Cladding 60 Roofing and Siding Finishes 60 61	

Π	STI	RUCTU	RAL BEH	HAVIOR OF ALUMINUM	63
	4	Mater	ial Propei	ties for Design	65
		4.1 4.2 4.3 4.4 4.5	Mechanic Elongatic Typical V The Shea The Effe Propertie	cal Properties 65 on 66 Versus Minimum Properties 67 ar Modulus G 67 ct of Welding on Mechanical s 67	
		4.6	The Effe Propertie	ct of Temperature on Mechanical s 68	
		4.7	Physical	Properties 69	
		4.8	Aluminu	m Material Specifications 69	
		4.9	Alloy Id	entification 69	
		4.10	Certificat	tion Documentation 71	
	5	Expla	nation of	the Aluminum Specifications	73
		5.1	Tension	Members 73	
			5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	Tensile Strength 74 Threaded Parts in Axial Tension 81 Net Area 82 Effective Net Area 84 Maximum Slenderness Ratios for Tension Members 86	
	5.2 Compression Members 86		sion Members 86		
			5.2.1 5.2.2	Overall Buckling 89 Local Buckling 106	
		5.3	Member	s in Bending 131	
			5.3.1 5.3.2 5.3.3	Bending Yielding and Fracture 131 Bending Buckling 140 Bending Shear 158	
		5.4	Torsion	163	
			5.4.1 5.4.2 5.4.3	St. Venant Torsion 165 Warping Torsion 167 A Final Note 169	
		5.5	Combine	ed Stresses 169	
			5.5.1 5.5.2	Combined Axial Compression and Bending 169 Combined Tension and Bending 171	
			5.5.3	Combined Shear, Compression, and Bending 172	

175

185

6.1 Background 175

6.2 The Aluminum Design Manual 178

6 Orientation to the Aluminum Specifications

III DESIGN CHECKS FOR STRUCTURAL COMPONENTS 183

7 Structural Members

- 7.1 Tension Member Design Procedure 185
 - 7.1.1 Net Effective Area 186
 - 7.1.2 Allowable Stress 187
 - 7.1.3 Tensile Capacity 187

7.2 Compression Member Design Procedure 187

- 7.2.1 Overall Column Slenderness Ratio 188
- 7.2.2 Slenderness Ratio of Cross-Sectional Elements 189
- 7.2.3 Allowable Column Stress of Typical Shapes 189
- 7.2.4 Summary of Column Allowable Stress 195
- 7.3 Bending Member Design Procedure 195
 - 7.3.1 Bending Tension 197
 - 7.3.2 Bending Compression 197
 - 7.3.3 Shear 202
- 7.4 Combined Stresses Design Procedure 202
 - 7.4.1 Combined Axial Compression and Bending 202
 - 7.4.2 Combined Tension and Bending 203
 - 7.4.3 Combined Shear, Compression, and Bending 204

8 Connections

- 8.1 Mechanical Connections 205
 - 8.1.1 Introduction 205
 - 8.1.2 Types of Fasteners 206
 - 8.1.3 Fastener Material Selection 212
 - 8.1.4 Fastener Mechanical Properties 213
 - 8.1.5 Types of Loads on Fasteners 215
 - 8.1.6 Types of Bolted Connections 216
 - 8.1.7 Holes 217

8.1.8 Failure Modes for Mechanically Fastened Joints 219

- 8.1.9 Tensile Loads on Fasteners 220
- 8.1.10 Shear Loads on Fasteners 223
- 8.1.11 Combined Shear and Tension on Bolts 227
- 8.1.12 Bearing and Edge Distance 228
- 8.1.13 Tension Strength of Connected Parts 229
- 8.1.14 Shear Rupture 229
- 8.1.15 Minimum Spacing and Edge Distance 230
- 8.1.16 Maximum Edge Distance and Spacing 232
- 8.1.17 Screw Connections 232
- 8.1.18 Minimum Requirements for Connections 236
- 8.2 Welded Connections 237
 - 8.2.1 Aluminum Welding Processes 237
 - 8.2.2 Selecting a Filler Alloy 238
 - 8.2.3 Types of Welds 239
 - 8.2.4 Comparing Aluminum and Steel Safety Factors 244
 - 8.2.5 Weld Fabrication 244
 - 8.2.6 Weld Quality Assurance 245

9 Special Provisions

- 9.1 Welded Members 247
 - 9.1.1 Types of Welded Members 247
 - 9.1.2 What Welding Does to Aluminum 247
 - 9.1.3 Strengths of Fully Weld-Affected Members 251
 - 9.1.4 Strengths of Partially Weld-Affected Members 251
 - 9.1.5 Welded Tension Members 256
 - 9.1.6 Welded Compression Members 258
 - 9.1.7 Post-Weld Heat Treatment 262

9.2 Fatigue 262

- 9.2.1 Fatigue: What Is It Again? 262
- 9.2.2 Fatigue Design: The Ground Rules 264
- 9.2.3 Variable Amplitude Fatigue Design 268
- 9.2.4 Aluminum Versus Steel in Fatigue 270

			9.2.5 9.2.6	Other Factors in Fatigue 270 A Final Word 270	
IV	DE	SIGN ()F STRU	CTURAL SYSTEMS	271
	10	Structural Systems Built With Aluminum			273
		10.1	Cold-Fo 10.1.1 10.1.2 10.1.3 Aluminu 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5	rmed Aluminum Construction 273 Building Sheathing 273 Cold-Formed Aluminum Design 280 Elastically Supported Flanges 286 um Frames 287 System Description 287 Model for Analysis 289 Getting Started 290 Analyzing the Dome 294 Design Checks 298	
V	LO	AD AN	D RESIS	TANCE FACTOR DESIGN	311
	11	Load	and Resis	stance Factor Design	313
	11	Load 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	and Resist New Tri LRFD— What's What's When D Which V The Gen ASD 3 How Th Specific How Do	stance Factor Design icks for Old Dogs 313 -The Concept 314 New: Load Factors 315 the Same 317 Do I Use LRFD? 317 Way Lets Me Use Less Metal? 318 neral Expression for Comparing LRFD to 321 ney Came Up With the LRFD ations 323 o I Actually Start Using LRFD? 329	313
Glo	11 ssary	Load 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	and Resist New Tri LRFD— What's What's What's When D Which V The Gen ASD How Th Specific How Do	stance Factor Design icks for Old Dogs 313 -The Concept 314 New: Load Factors 315 the Same 317 Do I Use LRFD? 317 Way Lets Me Use Less Metal? 318 neral Expression for Comparing LRFD to 321 ney Came Up With the LRFD ations 323 o I Actually Start Using LRFD? 329	313
Glo Tecl	11 sssary	Load 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 v	and Resist New Tri LRFD— What's What's What's What's What's The Gen ASD How Th Specific How Do	stance Factor Design icks for Old Dogs 313 -The Concept 314 New: Load Factors 315 the Same 317 Do I Use LRFD? 317 Way Lets Me Use Less Metal? 318 neral Expression for Comparing LRFD to 321 ney Came Up With the LRFD ations 323 o I Actually Start Using LRFD? 329	313 331 331 347
Glo Tecl Refe	11 ssary hnica erend	Load 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 v al Orga ces	and Resist New Tri LRFD— What's What's When E Which V The Gen ASD How Th Specific How Do	stance Factor Design icks for Old Dogs 313 -The Concept 314 New: Load Factors 315 the Same 317 Do I Use LRFD? 317 Way Lets Me Use Less Metal? 318 neral Expression for Comparing LRFD to 321 ney Came Up With the LRFD ations 323 o I Actually Start Using LRFD? 329	313 331 331 347 351

A Aluminum Extruders 355B Section Properties of Common Aluminum Shapes 359

- C Minimum Mechanical Properties of Aluminum Alloys 363
- D Allowable Stresses for Elements of Common Aluminum Shapes 373
- E Design Stresses for Elements of Common Aluminum Shapes 377
- F Column Buckling Allowable Stress 381
- G Summary of the Aluminum Specifications Design Provisions 383
- H Cross Reference to the Specifications for Aluminum Structures 385
- I LRFD Design Stresses for Aluminum 389

Index