ACOUSTICS OF DUCTS AND MUFFLERS

WITH APPLICATION TO EXHAUST AND VENTILATION SYSTEM DESIGN

M. E. Munjal

Department of Mechanical Engineering Indian Institute of Science Bangalore, India

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS NEW YORK · CHICHESTER · BRISBANE · TORONTO · SINGAPORE

CONTENTS

•			
1.	PR	OPAGATION OF WAVES IN DUCTS	1
	1.1	Plane Waves in an Inviscid Stationary Medium	2
	1.2	Three-Dimensional Waves in an Inviscid	
		Stationary Medium	5
		1.2.1 Rectangular Ducts	, 6
		1.2.2 Circular Ducts	9
	1.3	Waves in a Viscous Stationary Medium	13
	1.4	Plane Waves in an Inviscid Moving Medium	17
	1.5	Three-Dimensional Waves in an Inviscid	
		Moving Medium	19
	1.6	One-Dimensional Waves in a Viscous Moving	
		Medium	22
	1.7	Waves in Ducts with Compliant Walls	
		(Dissipative Ducts)	26
		1.7.1 Rectangular Duct with Stationary Medium	26
		1.7.2 Rectangular Duct with Moving Medium	30
		1.7.3 Circular Duct with Stationary Medium	35
		1.7.4 Circular Duct with Moving Medium	36
	1.8	Concluding Remarks	39
		References	39

xi

2.	THE	ORY OF ACOUSTIC FILTERS	42
	2.1	Units for the Measurement of Sound	43
	2.2	Uniform Tube	44
	2.3	Radiation Impedance	47
	2.4	Reflection Coefficient at an Open End	49
	2.5	A Lumped Inertance	50
	2.6	A Lumped Compliance	51
	2.7	End Correction	52
	2.8	Electroacoustic Analogies	53
	2.9	Electrical Circuit Representation of an	
		Acoustic System	54
	2.10	Acoustical Filter Performance Parameters	55
		2.10.1 Insertion Loss, IL	55
		2.10.2 Transmission Loss, TL	58
		2.10.3 Level Difference, LD	59
		2.10.4 Comparison of the Three Performance	
		Parameters	60
	2.11	Lumped-Element Representations of a Tube	61
	2.12	Simple Area Discontinuities	62
	2.13	Gradual Area Changes	64
		2.13.1 Çonical Tube	65
		2.13.2 Hyperbolic Tube	67
	2.14	Extended-Tube Resonators	68
	2.15	Helmholtz Resonator	70
	2.16	Concentric Hole-Cavity Resonator	71
	2.17	An Illustration of the Classical Method of	
			72
	2.18	The Transfer Matrix Method	/5
÷	2.19	An Algebraic Algorithm for Velocity Ratio VR_{n+1}	85
		2.19.1 Development of the Algorithm	85
		2.19.2 Formal Enunciation and Illustration of the Algorithm	86
	2.20	Synthesis Criteria for Low-Pass Acoustic Filters	88
	2.21	Analysis of Higher-Order Modes in Expansion	
		Chambers	- 92
		2.21.1 Compatibility Conditions at Area	
		Discontinuities	94
		2.21.2 Extending the Frequency Range	96
		2.21.3 Extension to Other Muffler Configurations	101
		References	102

CONTENTS	xiii
0011121110	

3.	AEF	ROACOUSTICS OF EXHAUST MUFFLERS	104
	3.1	The Exhaust Process	104
	3.2	Finite Amplitude Wave Effects	107
	3.3	Mean Flow and Acoustic Energy Flux	108
	3.4	Aeroacoustic State Variables	112
	3.5	Aeroacoustic Radiation	114
	3.6	Insertion Loss	119
	3.7	Transfer Matrices for Tubular Elements	121
		3.7.1 Uniform Tube	121
		3.7.2 Extended-Tube Elements	123
		3.7.3 Simple Area Discontinuities	128
		3.7.4 Physical Behavior of Area Discontinuities	129
	3.8	Transfer Matrices for Perforated Elements	130
		3.8.1 Two-Duct Elements	131
		3.8.2 Three-Duct Elements	138
		3.8.3 Some Remarks	147
	3.9	Acoustic Impedance of Perforates	147
		References	150
4.	тім	E-DOMAIN ANALYSIS OF EXHAUST SYSTEMS	153
	4.1	Gas-Dynamic Equations and Characteristics	154
	4.2	Mesh Method of Interpolation	164
	4.3	Exhaust Valve/Port or Cavity-Pipe junction	168
	4.4	Thermodynamics of the Cylinder/Cavity	175
	4.5	Simple Area Discontinuities	177
	4.6	Extended-Tube Resonators or Three-Tube	
		Junction Elements	181
	4.7	Scheme of Computation	184
	4.8	Noise Radiation	185
	4.9	Some Typical Results	186
	4.10	Linear Wave Approach to Time-Domain	
		Prediction	190
		References	191
5.	FLC	W-ACOUSTIC MEASUREMENTS	194
	5.1	A Passive Subsystem or Termination	194
	5.2	The Probe-Tube Method	195
		5.2.1 Evaluation of the Attenuation Constant	
		and Wave Number	196
		5.2.2 Evaluation of α^{\pm} and k^{\pm}	197
		5.2.3 Evaluation of the Reflection	
		Coefficient $ \dot{R} \exp(j\theta)$	198
		5.2.4 Experimental Setup	199

ļ

	5.3	The Two-Microphone Method	201
	5.4	Transfer Function Method	205
	5.5	Transient Testing Method	207
	5.6	Comparison of the various Methods for a	
		Passive Subsystem	210
	5.7	An Active Termination—Aeroacoustic	
		Characteristics of a Source	211
	5.8	Direct Measurement of Source Impedance Z _{c,s}	212
	5.9	Indirect Measurement of Source Characteristics	
		$P_{\rm c,s}$ and $Z_{\rm c,s}$	216
		5.9.1 Impedance-Tube Method	216
		5.9.2 Method of External Measurements	219
		5.9.3 Method of Finite Wave Analysis	226
	5.10	A Comparison of the Various Methods for	
		Source Characteristics	226
		References	227
6.	DISS	SIPATIVE DUCTS	230
	6.1	Transfer Matrix Relation for a Dissipative Duct	231
	6.2	Transverse Wave Numbers for a Stationary	
		Medium	235
	6.3	Normal Impedance of the Lining, Zw	236
	6.4	Transmission Loss	241
	6.5	Rigorous Analysis and Optimization of	
		Dissipative Ducts	243
	6.6	Parallel-Baffle Ducts	244
	6.7	The Effect of Mean Flow	248
	6.8	The Effect of Terminations on the Performance of	0.40
		Dissipative Ducts	249
	6.9	Lined Bends	250
	6.10	Plenum Chambers	251
	6.11	Flow-Generated Noise	252
		References	253
7.	FINI	TE ELEMENT METHODS FOR MUFFLERS	254
	7.1 A	A Single Element	255
	7.2 \	ariational Formulation of Finite Element	
	Equations		261
	ר 7.3	The Galerkin Formulation of Finite Element	-
	Ē	quations	266
	7.4 E	Evaluation of Overall Performance of a Muffler	269
	7.5 1	Numerical Computation	271

	CONTENTS	xv
7.6 An Illus	tration	274
Referen	Ces	282
8. DESIGN OF	MUFFLERS	285
8.1 Requirer	nents of an Engine Exhaust Muffler	285
8.2 Acoustic	: Considerations	286
8.3 Back-Pro	essure Considerations	297
8.4 Practical	Considerations	299
8.5 Design o	of Mufflers for Ventilation Systems	301
8.6 Active S	ound Attenuation	303
Reference	Ces	305
APPENDIX 1	BESSEL FUNCTIONS AND SOME OF	
	THEIR PROPERTIES	307
APPENDIX 2	ENTROPY CHANGES IN ADIABATIC FLOWS	311
	A2.1 Stagnation Pressure and Entropy	311
	A2.2 Pressure, Density, and Entropy	313
APPENDIX 3	NOMENCLATURE	315
INDEX		318
	C.	

i