Optimierung des Schaltprozesses bei schweren Nutzfahrzeugen durch adaptive Momentenführung

Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Carsten Joachim

aus Wemmetsweiler

Hauptberichter:

Prof. Dr.-Ing. H.-C. Reuss

Mitberichter:

Prof. Dr.-Ing. A. Kistner

Tag der mündlichen Prüfung: 16.04.2010

Institut für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart

Inhaltsverzeichnis

V	orwo	rt	J		
\mathbf{A}	bkür	zungen und Formelzeichen	6		
Zι	ısam	menfassung	12		
A١	bstra	act	14		
1	Ein	leitung	16		
2	Sta	nd der Technik	21		
	2.1	Triebstrangschwingungen	21		
	2.2	Schaltvorgänge	25		
	2.3	Bestehende Lösungsansätze	28		
	2.4	Ziel der Arbeit	31		
3	Systemkomponenten und Modellbildung				
	3.1	Antriebsstrang	33		
		3.1.1 Motor	34		
		3.1.2 Kupplung	36		
		3.1.3 Getriebe und Antriebswellen	39		
		3.1.4 Reifen und Dämpfung	40		
	3.2	Sattelzugmaschine	42		
	3.3	Simulation	46		
	3.4	Ersatzmodell	47		
4	Ges	steuerte Momentenführung	54		
	4.1	Zielsetzung	54		
	4.2	Steuerung durch Rampenfunktion	55		
	4.3	Systemtheoretische Grundlagen	58		
	4.4	Steuerungsentwurf für das Zweimassenmodell	63		
		4.4.1 Steuerung	63		
		4 4 2 Störgrößenkompensation	64		

		4.4.3 Trajektorienpianung		
	4.5	Steuerungsentwurf bei komplexen Modellen		
		4.5.1 Lineares Mehrmassenmodell		
		4.5.2 Nichtlineares Triebstrangmodell		. 71
	4.6	Simulationsergebnisse		. 74
5	Sch	itzverfahren		78
	5.1	Parameterempfindlichkeit der Momentenführung		. 78
	5.2	Beobachter für Zustands- und Störgröße $\dots \dots$. 86
		$5.2.1 Triebstrang moment \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 86
		5.2.2 Lastmoment		. 88
	5.3	Schätzung der Triebstrangparameter		. 91
		5.3.1 Primärträgheit und Fahrzeugmasse		
		5.3.2 Eigenfrequenz und Dämpfung \dots		
		5.3.2.1 Identifikationsmethoden		. 93
		5.3.2.2 Diskrete Systembeschreibung		. 95
		5.3.2.3 Parameteridentifikation		. 98
		5.3.2.4 Anmerkungen		. 102
	5.4	Parallele Schätzung		. 103
	5.5	Vergleich der Schätzverfahren	•	. 104
3	Stra	tegien zur Adaption		108
	6.1	Adaption durch Modellidentifikation		. 108
		6.1.1 Adaptionskonzept		. 108
		6.1.2 Koordination und Supervision		. 110
		6.1.3 Problematik der Parameterunsicherheiten		. 112
	6.2	Adaption mit Referenzverfahren		. 114
7	Fun	ktionsprototyp und Fahrversuche		119
	7.1	Funktionsentwurf		. 119
	7.2	Software in the Loop Testumgebung		. 122
	7.3	Fahrzeugintegration		. 124
	7.4	Versuchsergebnisse		. 125
3	Zus	ammenfassung und Ausblick		129
[.i·	terat	urverzeichnis		132