

Philippe G. Ciarlet

Université Pierre et Marie Curie Paris, France

TABLE OF CONTENTS

PREFACE TO THE CLASSICS EDITION	xv
Preface	xix
GENERAL PLAN AND INTERDEPENDENCE TABLE	xxvi
1. Elliptic boundary value problems	1
Introduction	1
1.1. Abstract problems	2
The symmetric case. Variational inequalities	2
The nonsymmetric case. The Lax-Milgram lemma	7
Exercises	9
1.2. Examples of elliptic boundary value problems	10
The Sobolev spaces $H^m(\Omega)$. Green's formulas	10
First examples of second-order boundary value problems	15
The elasticity problem	23
Examples of fourth-order problems: The biharmonic problem, the plate	
problem	28
Exercises	32
Bibliography and Comments	35
biologiaphy and comments	
2. Introduction to the finite element method	36
Introduction	36
2.1. Basic aspects of the finite element method	37
The Galerkin and Ritz methods	37
The three basic aspects of the finite element method. Conforming finite	
element methods	38
Exercises	43
2.2. Examples of finite elements and finite element spaces	43
Requirements for finite element spaces	43
First examples of finite elements for second order problems: n-	
Simplices of type (k) , $(3')$	44
Assembly in triangulations. The associated finite element spaces	51
n-Rectangles of type (k). Rectangles of type (2'), (3'). Assembly in	
triangulations	55
First examples of finite elements with derivatives as degrees of	
freedom: Hermite n -simplices of type (3), (3'). Assembly in triangulations	64
First examples of finite elements for fourth-order problems: the	٠.

	Argyris and Bell triangles, the Bogner-Fox-Schmit rectangle. Assem-
	bly in triangulations
	Exercises
2.3	General properties of finite elements and finite element spaces
	Finite elements as triples (K, P, Σ) . Basic definitions. The P-inter-
	polation operator
	Affine families of finite elements
	Construction of finite element spaces X_h . Basic definitions. The X_h -interpolation operator
	Finite elements of class \mathscr{C}^0 and \mathscr{C}^1
	Taking into account boundary and ideas. The survey V and V
	Taking into account boundary conditions. The spaces X_{0h} and X_{00h} .
	Final comments
	Exercises
2.4	General considerations on convergence
	Convergent family of discrete problems
	Céa's lemma. First consequences. Orders of convergence
	Bibliography and comments
3. Con	FORMING FINITE ELEMENT METHODS FOR SECOND ORDER PROBLEMS
	Introduction
2 1	I. Interpolation theory in Sobolev spaces
ا.ر	The Scholar spaces $W^{m,p}(\Omega)$. The quotient space $W^{k+1,p}(\Omega)/D(\Omega)$
	The Sobolev spaces $W^{m,p}(\Omega)$. The quotient space $W^{k+1,p}(\Omega)/P_k(\Omega)$. Error estimates for polynomial preserving operators
	Extracted of the interpolation arrange by W. of the office for illing
	Estimates of the interpolation errors $ v - \Pi_K v _{m,q,K}$ for affine families
	of finite elements
	Exercises
3	2. Application to second-order problems over polygonal domains
	Estimate of the error $ u-u_h _{1,\Omega}$
	Sufficient conditions for $\lim_{h\to 0} u-u_h _{1,\Omega} = 0$
	Estimate of the error $ u-u_h _{0,\Omega}$. The Aubin-Nitsche lemma
	Concluding remarks. Inverse inequalities
	Exercises
3.	3. Uniform convergence
	A model problem. Weighted semi-norms
	Uniform boundedness of the mapping $u \rightarrow u_h$ with respect to
	appropriate weighted norms
	appropriate weighted norms
	weighted norms
	Exercises
	Bibliography and comments
4. Отн	HER FINITE ELEMENT METHODS FOR SECOND-ORDER PROBLEMS
	Introduction
4.	1. The effect of numerical integration
ν.	Taking into account numerical integration. Description of the resulting
	discrete problem
	Abstract arror actimate: The first Strang lemma

CONTENTS xi

Sufficient conditions for uniform V_h -ellipticity					
Consistency error estimates. The Bramble-Hilbert len	mma	ı			
Estimate of the error $ u-u_h _{1,\Omega}$					
Exercises					
4.2. A nonconforming method					
Nonconforming methods for second-order problems	: D	PSCT	intio	n of	
the resulting discrete problem					
Abstract error estimate: The second Strang lemma					
An example of a nonconforming finite element: Wilso					
Consistency error estimate. The bilinear lemma					
Estimate of the error $(\Sigma_{K \in \mathcal{J}_h} u - u_h _{1.K}^2)^{1/2}$		٠		•	•
Exercises					•
4.3. Isoparametric finite elements					•
Isoparametric families of finite elements					•
Examples of isoparametric finite elements					•
Estimates of the interpolation errors $ v - \Pi_K v _{m,q,K}$					•
Exercises					
4.4. Application to second order problems over curved dom					
Approximation of a curved boundary with isoparametr					
Taking into account isoparametric numerical integral	tion.	De	scrip	tion	
of the resulting discrete problem					
Abstract error estimate					
Sufficient conditions for uniform V_h -ellipticity .					
Interpolation error and consistency error estimates					
Estimate of the error $\ \tilde{u} - u_h\ _{1,\Omega_h}$					
Exercises					
Bibliography and comments					_
Additional bibliography and comments					
Problems on unbounded domains				•	•
The Stokes problem				•	•
Eigenvalue problems					
Eigenvalue problems		•		•	•
5. APPLICATION OF THE FINITE ELEMENT METHOD TO SOME					
PROBLEMS					
Introduction					
5.1. The obstacle problem	•	•	• :	•	•
Variational formulation of the obstacle problem	• •	•	٠.	•	•
An abstract error estimate for variational inequalities					
Finite element approximation with triangles of type	. (1)	E.	 		
the error $ u-u_h _{1,\Omega}$	(1).	ES	umai	e oi	
		•		٠	•
5.2. The minimal surface problem		٠		•	•
A formulation of the minimal surface problem					
Finite element approximation with triangles of type					
the error $ u-u_h _{1,\Omega_h}$					
Exercises					
5.3. Nonlinear problems of monotone type					

xii CONTENTS

A minimization problem over the space	ce $W_0^*(\Omega)$, $Z \le p$, and its nni	ie.
element approximation with n-simplic	es of type (1)	
Sufficient condition for $\lim_{h\to 0} u-u_h _1$	$_{o,o}=0$	
The equivalent problem $Au = f$. Two j	properties of the operator A	
Strongly monotone operators. Abstrac		
Estimate of the error $ u - u_h _{1,p,\Omega}$.		
Bibliography and comments		
Additional bibliography and comments		
Other nonlinear problems		•
		٠
The Navier-Stokes problem		٠
. FINITE ELEMENT METHODS FOR THE PLATE	PROBLEM	
		•
6.1. Conforming methods		•
Conforming methods for fourth-order		
Almost-affine families of finite elemen		
A "polynomial" finite element of class		
A composite finite element of class		
A singular finite element of class &1:		
Estimate of the error $ u - u_h _{2,\Omega}$.		
Sufficient conditions for $\lim_{h\to 0} u-u_h $	$\ _{2,\Omega}=0$	
Conclusions		
Exercises		
6.2. Nonconforming methods		
Nonconforming methods for the plate		
An example of a nonconforming finite		
Consistency error estimate. Estimate	of the error $(\Sigma_{n-n} y-y_n _{2}^2)$	1/2
Further results		
Bibliography and comments		•
. A MIXED FINITE ELEMENT METHOD		
Introduction		
7.1. A mixed finite element method for the t	-	
Another variational formulation of the		
The corresponding discrete problem.		
Estimate of the error $(u-u_h _{1,\Omega}+ \Delta u$		
Concluding remarks		
7.2. Solution of the discrete problem by dua		
Replacement of the constrained minis		
point problem		
Use of Uzawa's method. Reduction t		
Ose of Ozawa's method. Reduction t	a mandada ar minainta buildi	
problems for the operator $-A$		

CONTENTS	iiix

Convergence of Uzawa's method	402
Concluding remarks	403
Exercises	404
Bibliography and comments	406
Additional bibliography and comments	407
Primal, dual and primal-dual formulations	407
	412
Mixed methods	414
	417
An attempt of general classification of finite element methods	421
8. Finite element methods for shells	425
Introduction	425
8.1. The shell problem	426
Geometrical preliminaries. Koiter's model	426
Existence of a solution. Proof for the arch problem	431
	437
	439
The discrete problem. Approximation of the geometry. Approximation	
of the displacement	439
Finite element methods conforming for the displacements	440
Consistency error estimates	443
Abstract error estimate	447
	448
	450
Conforming finite element methods for shells	450
Conforming finite element methods for shells	451
The circular arch problem	451
A natural finite element approximation	452
Finite element methods conforming for the geometry	453
A finite element method which is not conforming for the geometry.	
	453
	461
Estimate of the error $(u_1 - u_{1h} _{1,l}^2 + u_2 - u_{2h} _{2,l}^2)^{1/2}$	465
Exercise	466
Bibliography and comments	466
EPILOGUE: Some "real-life" finite element model examples	469
P	
BIBLIOGRAPHY	481
0	
GLOSSARY OF SYMBOLS	512
INDEX	521
INDEA	3/1