Diss. ETH No. 18581

Algorithmic decision support for train scheduling in a large and highly utilised railway network

A dissertation submitted to the

ETH ZURICH

for the degree of DOCTOR OF SCIENCES

presented by

GABRIO CURZIO CAIMI Dipl. Math. ETH

born 14th June 1979 citizen of Ligornetto (TI)

. .

accepted on the recommendation of

Prof. Dr. Hans-Jakob Lüthi, examiner Prof. Dr. Leo Kroon, co-examiner Prof. Dr. Ulrich Weidmann, co-examiner

Contents

A	cknov	ledgments	iii
AI	ostra	t	vii
1	Intro	duction	1
	1.1	Motivation	1
	1.2	Goal of the thesis	2
	1.3	Main contributions	4
	1.4	Outline of the thesis	6
2	Bac	ground	9
	2.1	Planning from the commercial offer to the conflict-free production plan .	9
		2.1.1 Deregulation of railway market	10
		2.1.2 Planning stages	12
	2.2	Timetabling and periodicity	19
		2.2.1 The timetabling task	19
		2.2.2 Notion of periodicity	20
	2.3	A production-oriented approach	23
		2.3.1 Background and goal	23
		2.3.2 Planning and production methods	24
		2.3.3 Integrated real-time rescheduling	26
	2.4	Focus of this thesis	28
3	Pro	lem definition and two-level approach	31
	3.1	Related work	31

	3.2	Basic i	idea of the two-level approach	34
	3.3	Macro	scopic topology	36
		3.3.1	Purpose and properties	36
		3.3.2	Graph representation	37
		3.3.3	Macroscopic safety system using headway times	38
		3.3.4	Formal definition	40
	3.4	Micros	scopic topology	40
		3.4.1	Basics and goal	40
		3.4.2	Double vertex graph	41
		3.4.3	Resources	45
		3.4.4	Signals and blocking times	46
		3.4.5	Formal definition	49
	3.5	Train o	dynamics	50
		3.5.1	Microscopic train dynamics	51
		3.5.2	Macroscopic train dynamics	51
	3.6	Partial	periodic service intention	52
	3.7	Macro	scopic timetable and microscopic schedule	59
	3.8	Train s	scheduling problem and two-level algorithm	60
4	Mac	rosco	pic timetabling	65
•	4.1	Relate	d work	66
	4.2	Period	lic Event Scheduling Problem	68
		4.2.1	Classical PESP model	68
		4.2.2	Constraints	70
		4.2.3	Objective functions	73
		4.2.4	Cycle periodicity formulation	73
		4.2.5	Non-collision constraints	75
	4.3	Flexib	le PESP	75
		4.3.1	Motivation and basic idea	75
		4.3.2	Flexibility and robustness	77
		4.3.3	Properties	78
		4.3.4	FPESP model	79
		4.3.5	Objective functions	81
		4.3.6	Interaction with the microscopic level	83
	4.4	Flexbo	ox model	84
		4.4.1	Motivation	84
		4.4.2	Definition	85
		4.4.3	Application examples	88

	4.5	Compu	itational results
		4.5.1	Reference scenario
		4.5.2	Results for different objective functions
		4.5.3	Results for the Flexbox model
	4.6	Bi-obje	ective analysis
	4.7	Summa	ary and final remarks
5	Mic	roscop	ic scheduling: network decomposition approach 111
	5.1	Related	d work
	5.2	Netwo	rk decomposition
		5.2.1	Condensation zones
		5.2.2	Compensation zones
	5.3	Interfa	ce between the zones
	5.4	Solvin	g the micro scheduling problem
6	Mic	roscop	ic scheduling in condensation zones 125
	6.1	Proble	m formulation
	6.2	Relate	d work
		6.2.1	Conflict graph model
		6.2.2	Other approaches
	6.3	Policie	es for train scheduling
		6.3.1	Time discretisation
		6.3.2	Route reduction
	6.4	The Re	esource Tree Conflict Graph model
		6.4.1	Resource trees
		6.4.2	Constraining flows: the Resource Tree Conflict Graph 142
		6.4.3	Objective function
		6.4.4	ILP Formulation
		6.4.5	Extension to departure time slots
		6.4.6	Robustness measure
	6.5	Dealin	g with infeasibility
	6.6	Varian	ts of the RTCG model
		6.6.1	Tree Conflict Graph
		6.6.2	Resource Conflict Graph
	6.7	Comp	utational results
		6.7.1	Scenarios and implementation
		6.7.2	Analysis of the scheduling policies
		6.7.3	Computational results and comparison between the models 160
		6.7.4	Results for the extended ILP

		6.7.5 Robustness results		
	6.8	Summary and final remarks		
7	Mic	roscopic scheduling in compensation zones 169		
	7.1	Related work		
	7.2	Problem formulation and solution approach		
	7.3	Generation of speed profiles for a single route		
		7.3.1 Generating a set of β -profiles		
		7.3.2 Restricting the speed profiles		
		7.3.3 Quality measure		
	7.4	Optimisation model		
	7.5	Computational results		
	7.6	Final remarks		
8	Trai	n scheduling for partial periodicity 183		
	8.1	Basic idea		
	8.2	Procedure for partial periodic train scheduling		
		8.2.1 Slot propagation		
		8.2.2 Projection to a periodic instance		
		8.2.3 Periodic timetable generation		
		8.2.4 Rolling out the solution		
•	8.3	Equivalence between original and projected problem		
		8.3.1 Choice of the period length T		
	8.4	Computational results		
	8.5	Final remarks		
9	Glo	bal results and added value of flexibility 203		
	9.1	Results for the complete train scheduling procedure		
	9.2	Added value of flexibility on the micro level		
10) Cor	aclusions 209		
	10.1	Critical appraisal of the results		
	10.2	Outlook for future research		
Ri	bliog	iranhy 213		
	Shog	, up.iy 21.		
Α	Scenarios used as test cases 23			
	A.1	Network in central Switzerland		
		A.1.1 Macroscopic topology		
		A.1.2 Microscopic topologies		

	A.2	Condensation zone of Berne	235
	A.3	Macroscopic network in Ticino	236
	A.4	Overview on the usage of the scenarios	237
в	On s	stable sets and maximal cliques in intersection graphs	239
	B .1	Motivation	239
	B.2	Intersection graphs and stable sets	241
	B.3	Interval graphs	244
		B.3.1 Performance proof of the algorithm	245
	B.4	Circular-arc graphs	247
		B.4.1 Non-degenerate circular-arc graphs	249
	B.5	Summary	252
С	Con	nputation of track paths with blocking times	253
С	Con C.1	putation of track paths with blocking times Different speed profiles for same route	253 253
С	Com C.1 C.2	nputation of track paths with blocking times Different speed profiles for same route Platforms and connections	253 253 254
С	C.1 C.2 C.3	Different speed profiles for same route	253 253 254 255
C Zu	Con C.1 C.2 C.3 same	putation of track paths with blocking times Different speed profiles for same route Platforms and connections Computation of blocking time start and end menfassung	 253 253 254 255 261
C Zu Ria	Com C.1 C.2 C.3 same	apputation of track paths with blocking times Different speed profiles for same route Platforms and connections Computation of blocking time start and end menfassung nto	 253 253 254 255 261 265
C Zu Ria Ré	Con C.1 C.2 C.3 sami	putation of track paths with blocking times Different speed profiles for same route Platforms and connections Computation of blocking time start and end menfassung nto	 253 254 255 261 265 269
C Zu Ria Ré	Con C.1 C.2 C.3 sami assur	apputation of track paths with blocking times Different speed profiles for same route Platforms and connections Computation of blocking time start and end menfassung nto é nt	253 254 255 261 265 269 273

. •