Earthquake-resistant Concrete Structures

,

GEORGE G. PENELIS

Department of Civil Engineering, University of Thessaloniki, Greece

and

ANDREAS J. KAPPOS

Department of Civil Engineering, Imperial College, London and Department of Civil Engineering, University of Thessaloniki, Greece

With a foreword by Professor P.E. Pinto

Contents

Fe	oreword by Protessor P.E. Pinto	
P	reface	xv
L	ist of abbreviations	xix
1	Introduction	1
2	Elements of engineering seismology	3
	2.1 Origin – geographical distribution of earthquakes	3
	2.2 Instruments for recording seismic motions	3
	2.3 The magnitude and the intensity of the earthquake	4
	2.3.1 Earthquake magnitude	5
	2.3.2 Earthquake intensity	8
	2.4 Seismicity and seismic hazard	12
	2.4.1 Seismicity	12
	2.4.2 Seismic nazard	15
	2.6 References	16
3	Elements of structural dynamics	17
	2.1. Intraduction	17
	3.2 Dynamic analysis of elastic single-degree of freedom	17
	(SDOF) systems	17
	3.2.1 Introduction	17
	3.2.2 Equations of motion	19
	3.2.3 Response spectra	21
	3.3 Inelastic response of SDOF systems	27
	3.3.1 Introduction	27
	3.3.2 Viscous damping	28
	n ar ar a Sin ar an	

	3.3.3 Hysteretic damping	29
	3.3.4 Energy dissipation and ductility	32
	3.4 Dynamic analysis of multidegree-of-freedom	
	elastic systems	38
	3.4.1 Introduction	38
	3.4.2 The two methods of analysis	40
	3.5 Dynamic analysis of MDOF inelastic systems	44
	3.5.1 Introduction	44
	3.5.2 Methodology of inelastic dynamic analysis with	
	DRAIN-2D/90	44
	3.6 References	50
4	Design principles and design seismic actions	51
	4.1 Introduction	51
	4.2 The conceptual framework of seismic design	52
	4.2.1 Basic principles and requirements of modern	
	seismic codes	52
	4.2.2 The concept of seismic isolation	55
	4.3 Configuration of the structural system	56
	4.3.1 Fundamental requirements	56
	4.3.2 Structural systems covered by seismic codes	57
	4.3.3 Recommendations concerning structural configurations	58
	4.4 Design seisinic actions	04 64
	4.4.1 General 4.4.2 Seismic zones	64 64
	4.4.3 The local subsoil conditions	65
	4.4.4 Elastic response spectrum	66
	4.4.5 Design spectrum for linear analysis	68
	4.4.6 Importance factor	70
	4.4.7 General remarks on the design spectrum	71
	4.4.8 Alternative representation of the seismic action	72
	4.5- Combination of seismic action with other actions	72
	4.6 References	73
5	Analysis of the structural system	75
	5.1. Structural regularity	75
	5.1.1. Introduction	75
	5.1.7 Introduction 5.1.2 Criteria for regularity in plan	75
	5.1.2 Criteria for regularity in elevation	75
	5.2 Modelling of the structure	78
	5.2.1 General	78
	5.2.2 Masses contributing to the inertia forces	78
	5.2.3 Application of the design seismic actions	78
	5.3 Methods of analysis	79
	5.4 Simplified modal response spectrum analysis	79
	5.4.1 General	79
	5.4.2 Base shear forces	80
	5.4.3 Distribution of the horizontal seismic forces	80

5.4.4 Estimation of the fundamental period	1 82
5.4.5 Torsional effects	82
5.4.6 Proposed procedure for the analysis	84
5.5 The pseudospatial structural systems	
under horizontal loading	85
5.5.1 General	85
5.5.2 Plane structural systems	85
5.5.3 Frame or shear system	86
5.5.4 Wall systems or flexural systems	87
5.5.5 Dual systems	87
5.5.6 The pseudospatial structural system	89
5.6 Multimodal response spectrum analysis	98
5.6.1 General	98
5.6.2 Suggested procedure for the analysis	100
5.7 Combination of the components of gravity	loads
and seismic action	102
5.7.1 General	102
5.7.2 Theoretical background	103
5.7.3 Simplified procedure	104
5.7.4 Code requirements	109
5.8 Second-order effects ($P-\Delta$ effects)	111
5.9 The influence of masonry inflied frames	112
on the seismic behaviour of structures	113
5.9.1 General	113
5.9.2 Effects on the analysis	113
5.9.3 Design seismic action effects	114
5.9.4 Irregularities due to masonry infilis	115
5.9.5 Remarks on immed frames	intural system 116
5.10 Deneral remarks on the analysis of the suc	110 112
5.11 References	110
6 Design action effects-safety verifications	120
6.1 The design action effects-capacity design pr	ocedure 120
6.1.1 General	120
6.1.2 Design criteria influencing the design	action effects 121
6.1.3 Capacity design procedures for beams	122
6.1.4 Capacity design procedure for columr	is 123
6.1.5 Capacity design procedure for shear w	valls 128
6.1.6 Capacity design for connecting beams	of the footings 130
6.2 Safety verifications	131
6.2.1 General	131
6.2.2 Ultimate limit state	131
6.2.3 Serviceability limit state	133
6.2.4 Specific measure	134
6.3 Application of EC8 to the design of a simpl	e dual system 137
6.3.1 Introduction	137
6.3.2 System geometry	137
6.3.3 Characteristics of the materials	137
6.3.4 Design gravity loads	139

.

	6.3.5 Design seismic actions 6.3.6 Equivalent horizontal forces	139 141
	6.3.7 Design load combinations	147
	6.3.8 Structural analysis	142
	6.4 References	147
7	Earthquake-resistant properties of the materials of reinforced concrete	149
	7.1 Introduction	149
	7.2 Reference to code provisions	150
	7.3 Plain (unconfined) concrete	150
	7.3.1 Response to monotonic loading	151
	7.3.2 Response to cyclic loading	155
	7.3.3 Response to multiaxial loading	158
	7.3.4 Relevant code provisions	177
	7.4 Confined concrete	177
	7.4.1 The notion of confinement	177
	7.4.2 Parameters affecting confinement	179
	7.4.3 Confinement with hoops	180
	7.4.4 Confinement with spirals	190
	7.4.5 Relevant code provisions	194
	7.5 Steel	197
	7.5.1 Main requirement for seismic performance	197
	7.5.2 Response to monotonic loading	199
	7.5.3 Response to cyclic loading	201
	7.5.4 Relevant code provisions	204
	7.6 Bond between concrete and steel	205
	7.6.1 Constitutive equations of bond	205
	7.6.2 Bond under monotonic loading	206
	7.6.3 Bond under cyclic loading	211
	7.6.4 Relevant code provisions	217
	/// References	219
Q	Forthquake resistant design of reinforced congrets linear elements	222

0	Earinquakt-resistant design of remoteed concrete inical clements	225
	8.1 Introduction	223
	8.2 Seismic behaviour of beams	224
	8.2.1 Behaviour under monotonic loading	224
	8.2.2 Behaviour under cyclic loading	237
	8.3 Seismic design of beams	251
	8.3.1 Design for flexure	251
	8.3.2 Design for shear	255
	8.3.3 Other design requirements	258
	8.4 Seismic behaviour of columns	261
	8.4.1 Uncertainties regarding the capacity design	
	of columns	261
	8.4.2 Behaviour under monotonic loading	263
	8.4.3 Behaviour under cyclic loading	269

8.5 5	Seismic design of columns	280
8	8.5.1 Design for flexure and axial loading	280
8	8.5.2 Design for shear and local ductility	285
8	3.5.3 Other design requirements	290
8.6 I	Design example	293
8	3.6.1 General data and analysis procedure	293
8	3.6.2 Design of beams	296
8	3.6.3 Design of columns	304
8.7 I	References	313
9 Ear	thquake-resistant design of reinforced concrete planar elements	317
9.1	Introduction	317
9.2	Beam-column joints	317
	9.2.1 Basic design principles	318
	9.2.2 Behaviour of joints under cyclic shear	320
	9.2.3 Design for shear	329
	9.2.4 Anchorage of reinforcement in joints	333
	9.2.5 Special types of joints	337
	9.2.6 Design example	341
9.3	Seismic behaviour of walls	345
	9.3.1 Advantage of structural walls	345
	9.3.2 Behaviour under monotonic loading	346
	9.3.3 Behaviour under cyclic loading	349
0	9.3.4 Walls with openings	356
9.4	Seismic design of walls	361
	9.4.1 Design for flexure and axial loading	361
	9.4.2 Design for shear and local ductility	361
	9.4.3 Other design requirements	3/0
	9.4.4 Design example	200
0.4	9.4.5 Design of dianhragma	200
9.1	0.5.1. Requirements regarding configuration	303
	and design actions	202
	0.5.2 Rehaviour under evolic loading	381
	9.5.2 Denaviour under cyclic loading	384
9.6		385
9.0	, Keletenees	505
10 Seis	smic performance of buildings	200
uesi	gned to model in design codes	500
10.1	Methods for assessing the seismic performance	388
	10.1.1 Introductory remarks	388
	10.1.2 Performance assessment through testing of	
	models and inspection of actual structures	389
	10.1.3 Performance assessment using inelastic dynamic analysis	390
10.2	2 Seismic performance of frames	392
	10.2.1 Selection of input motions	392
	10.2.2 Modelling assumptions and failure criteria	395
	10.2.3 Performance under the design earthquake	399
	10.2.4 Serviceability and survival earthquake	404

.

.

	10.3 Seismic performance of dual systems	406
	10.3.1 Modelling assumptions and failure criteria	407
	10.3.2 Performance under the design earthquake	409
	10.3.3 Serviceability and survival earthquake	415
	10.4 Influence of design ductility class	418
	10.4.1 Influence on cost	418
	10.4.2 Influence on seismic performance	419
	10.5 Influence of masonry infills	424
	10.6 Concluding remarks	429
	10.7 References	430
11	Seismic pathology	433
	11.1 Classification of damage in R/C structural members	433
	11.1.1 Introduction	433
	11.1.2 Damage to columns	434
	11.1.3 Damage to R/C walls	436
	11.1.4 Damage to beams	440
	11.1.5 Damage to beam-column joints	445
	11.1.6 Damage to slabs	446
	11.1.7 Damage to infill panels	447
	11.1.8 Spatial distribution of damages in buildings	452
	11.1.9 Stiffness degradation	454
	11.2 Factors affecting the degree of damage to buildings	455
	11.2.1 Introduction	455
	11.2.2 Divergence between the design spectrum	
	and the response spectrum of the earthquake	
	under consideration	455
	11.2.3 Brittle columns	456
	11.2.4 Asymmetric arrangement of stiffness elements	4.5.7
	on the floor plan	457
	11.2.5 Flexible ground floor	458
	11.2.6 Short columns	460
	11.2.7 Shape of the floor plan	461
	11.2.8 Shape of the building in elevation	461
	11.2.9 Slabs supported by columns without beams	1(1
	(flat plate system)	461
	11.2.10 Damage from previous eartinquakes	462
	11.2.11 Pure frame systems	403
	11.2.12 Number of storeys	404
	11.2.13 Type of foundations	404
	11.2.14 The location of adjacent structures in the block	400
	11.2.15 Stab levels of adjacent structures	400
	11.3 References	408
12	Emergency post-earthquake damage inspection and evaluation	469
	12.1 Introduction	469
	12.2 Inspections and damage assessment	470
	12.2.1 Introductory remarks	470
	12.2.2 Purpose of the inspections	470

		12.2.3 Damage assessment	471
	12.3	Organizational scheme for inspections	473
		12.3.1 Introduction	473
		12.3.2 Usability classification – inspection forms	474
		12.3.3 Inspection levels	476
	12.4	Action plan	476
		12.4.1 Introduction	476
		12.4.2 State agency responsible for the operation	476
		12.4.3 Inspection personnel	476
		12.4.4 Pre-earthquake organizing procedures	478
		12.4.5 Post-earthquake organizing procedures	479
	12.5	Final remarks	481
	12.6	References	481
13	Desi	gn of repair and strengthening	483
	131	General	483
	13.2	Definitions	484
	13.3	Objectives and principles of interventions	487
	13.4	Criferia for repair or strengthening	488
	12.1	13.4.1 Basic principles	488
		13.4.2 The UNIDO/UNDP procedure	489
	13.5	Design steps of intervention	495
	10.0	13.5.1 General	495
		13.5.2 Strengthening	495
		13 5 3 Renair	498
		13.5.4 Repair of the masonry infills	499
	13.6	Criteria governing structural interventions	499
	1210	13.6 General criteria	500
		13.6.2 Technical criteria	500
		13.6.3 Type of intervention	500
		13.6.4 Examples of repair and strengthening techniques	501
	13.7	Final remarks	501
	13.8	References	504
14	Tecł	nology of shoring, repair and strengthening	506
	14 1	General	506
	14.1	Emergency measures for temporary supports	507
	11.2	14.2.1 General	507
		14.2.2. Techniques for supporting vertical loads	508
		14.2.3 Techniques for resisting lateral forces	509
		14.2.4 Wedging techniques	514
	14 3	Materials and intervention techniques	515
	14.5	14.3.1. Conventional cast-in-place concrete	515
		14.3.2 High-strength concrete using shrinkage	515
		compensating admixtures	516
		14.3.3 Shotcrete (gunite)	516
		14.3.4 Polymer concrete	518
		14.3.5 Resins	518
		A HOLE A COMPO	510

1

14.3.6 Resin-concretes	519
14.3.7 Grouts	520
14.3.8 Gluing metal sheets on concrete	520
14.3.9 Welding of new reinforcement	521
14.3.10 Gluing Fibre-Reinforced Plastic (FRP)	
sheets on concrete	521
14.4 Redimensioning and safety verification of structural elements	522
14.4.1 General	522
14.4.2 Revised $\gamma_{\rm m}$ -factors	523
14.4.3 Load transfer mechanisms through interfaces	524
14.4.4 Simplified estimation of the resistance	
of structural elements	528
14.5 Repair and strengthening of structural elements	529
14.5.1 General	529
14.5.2 Columns	530
14.5.3 Beams	537
14.5.4 Beam-column joints	544
14.5.5 R/C walls	546
14.5.6 R/C slabs	551
14.5.7 Foundations	553
14.5.8 Infill masonry walls	555
14.6 Addition of new structural elements	557
14.7 Quality assurance of interventions	560
14.7.1 General	560
14.7.2 Quality control of design	560
14.7.3 Quality control of construction	561
14.8 Final remarks	561
14.9 References	562

Index

.

565