BUOYANCY EFFECTS IN FLUIDS

BY
J. S. TURNER

Assistant Director of Research in Fluid Mechanics
Department of Applied Mathematics and Theoretical Physics
University of Cambridge

CAMBRIDGE
AT THE UNIVERSITY PRESS
1973
CONTENTS

Preface
page xiii

I INTRODUCTION AND PRELIMINARIES

1.1 The topics to be discussed
1

1.2 Equilibrium and departures from it
3

1.3 The equations of motion and various approximations
6

1.4 Basic parameters of heterogeneous flows
11

2 LINEAR INTERNAL WAVES

2.1 Waves at a boundary between homogeneous layers
14
Progressive waves in deep water, 15; Waves between layers of finite thickness, 18; Standing waves, 19

2.2 Waves in a continuously stratified fluid
21
Description in terms of modes, 22; Description in terms of rays, 24; Laboratory experiments on waves in bounded regions, 29

2.3 Waves in a moving stratified fluid
31
Velocity constant with height, 31; Lee waves with varying properties in the vertical, 34; Reversals of velocity and critical layers, 37

2.4 Weak non-linearities: interactions between waves
39
The mechanism of resonant interaction, 39; Interactions of interfacial waves, 41; Interactions with continuous stratification, 44

3 FINITE AMPLITUDE MOTIONS IN STABLY STRATIFIED FLUIDS

3.1 Internal waves of finite amplitude
48
Interfacial waves, 48; Cnoidal and solitary waves, 52; Waves and flows in a density gradient, 55; Finite amplitude lee waves, 58
3.2 Internal hydraulics and related problems

Steady frictionless flow of a thin layer, 64; Internal hydraulic jumps, 66; Flow down a slope, 68; The 'lock exchange' problem, 70; Gravity currents and noses, 72

3.3 Slow motions in a stratified fluid

The problem of selective withdrawal, 76; Blocking ahead of an obstacle, 79; Upstream wakes and boundary layers, 82; Viscous diffusive flows, 86

4 INSTABILITY AND THE PRODUCTION OF TURBULENCE

4.1 The stability of a free shear layer

The various types of instability, 92; The Kelvin–Helmholtz mechanism, 94; Interfaces of finite thickness, 97; Observations of the breakdown of parallel stratified flows, 102

4.2 The combined effects of viscosity and stratification

Viscous effects at an interface, 107; Thermally stratified plane Poiseuille flow, 108; Flows along a sloping boundary, 111; Transition to turbulence, 114

4.3 Mechanisms for the generation of turbulence

Classification of the various mechanisms, 116; Flows near boundaries, 118; Shear instabilities produced by interfacial waves, 120; The interaction between wave modes, 123; Internal instabilities with continuous stratification, 124

5 TURBULENT SHEAR FLOWS IN A STRATIFIED FLUID

5.1 Velocity and density profiles near a horizontal boundary

The logarithmic boundary layer, 128; The effect of a buoyancy flux, 130; Forced and free convection, 133; Constant-flux layers in stable stratification, 136

5.2 Theories of turbulence in a stratified shear flow

Similarity theories of turbulence and diffusion, 139; The spectrum of nearly inertial turbulence, 140; Arguments based on the governing equations, 145

5.3 Observations and experiments on stratified shear flows

The generation and collapse of turbulent wakes, 151; The suppression of turbulence at an interior shear layer, 154; Stratified flows in pipes, channels and estuaries, 157; Longitudinal mixing and advection, 161
CONTENTS

6 BUOYANT CONVECTION FROM ISOLATED SOURCES page 165

6.1 Plumes in a uniform environment 167
Axisymmetric turbulent plumes, 167; The entrainment assumption, 170; Forced plumes, 173; Vertical two-dimensional plumes, 176

6.2 Inclined plumes and turbulent gravity currents 178
A modified entrainment assumption, 178; Slowly varying flows, 180; Laboratory experiments and their applications, 181; Detailed profile measurements, 186

6.3 Thermals in a uniform environment 186
Dimensional arguments and laboratory experiments, 186; Buoyant vortex rings, 189; 'Starting plumes', 191; Line thermals and bent-over plumes, 192

6.4 The non-uniform environment 194
Motions in an unstable environment, 194; Plumes in a stable environment, 196; Forced plumes and vortex rings in a stable environment, 200; Environmental turbulence, 203

7 CONVECTION FROM HEATED SURFACES 207

7.1 The theory of convection between horizontal plates 208
The governing parameters, 208; Linear stability theory, 210; Finite amplitude convection, 211

7.2 Laboratory and numerical experiments on parallel plate convection 215
Observations of laminar convection, 216; Measurements at larger Rayleigh numbers, 219; Numerical experiments, 222

7.3 The interaction between convective elements and their environment 226
The formation of plumes or thermals near a horizontal boundary, 226; The environment as an ensemble of convection elements, 230; Convection from small sources in a confined region, 231; Penetrative convection, 234
7.4 Convection with other shapes of boundary
A heated vertical wall, 241; Buoyancy layers at vertical and sloping boundaries, 243; Convection in a slot, 246

8 DOUBLE-DIFFUSIVE CONVECTION

8.1 The stability problem
The mechanism of instability, 251; Linear stability analysis, 253; The form of the convection cells, 257; Finite amplitude calculations, 259

8.2 The formation of layers: experiments and observations
The 'diffusive' regime, 262; The 'finger' regime, 266; Side boundaries and horizontal gradients, 267; Related observations in the ocean, 270

8.3 The fluxes across an interface
Measurements in the 'diffusive' regime, 274; The time-history of several convecting layers, 278; Fluxes and structure at a 'finger' interface, 280; The thickness of a 'finger' interface, 283; Convection in a region of variable depth, 285

9 MIXING ACROSS DENSITY INTERFACES

9.1 Laboratory experiments
Stirring with oscillating grids, 288; Mixing driven by a surface stress, 292; The influence of molecular processes, 295; Comparison of various methods of stirring, 297

9.2 Geophysical applications
The wind-mixed surface layer, 299; Seasonal changes of a thermocline, 301; Mixing at an atmospheric inversion, 306; Other factors limiting the depth of a mixed layer, 310

10 INTERNAL MIXING PROCESSES

10.1 The observational data

10.2 Critical Richardson number criteria
Examples of equilibrium conditions, 318; Non-equilibrium conditions: step formation, 319; Energetics of a layered system, 322
CONTENTS

10.3 Wave-induced mixing page 325

Mixing at existing interfaces, 325; Formation of layers from a smooth gradient, 327; Statistical aspects of wave generation and breaking, 330; Waves and turbulence in large scale flows, 334

Bibliography and Author Index 338

Recent Publications 358

Subject Index 361