Design of Modern Highway Bridges

Narendra Taly, Ph.D., P.E.

Department of Civil Engineering California State University, Los Angeles Los Angeles, CA

÷

THE McGRAW-HILL COMPANIES, INC.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

CONTENTS

•

r . .

		Prefac	ce	xi	
		Acror	onyms		
	1	Introduction			
		1.1	Historical Background	1	
		1.2	Glossary	44	
		1.3	Types of Bridges	46	
		1.4	AASHTO Specifications for Design of Highway Bridges	91	
		1.5	Design Philosophy	94	
			References	107	
	2	Mate	erials of Bridge Construction	117	
		2.1	Introduction	117	
		2.2	Steel	117	
~~ ~		2.3	Concrete	122	
		2.4	Reinforcing Steel and Bars	125	
		2.5	Composite Materials	130	
			References	166	
	3	Load	ls on Bridges	176	
	i	3.1	Introduction	176	
		3.2	Loads on Bridge Superstructures	178	
		3.3	Impact	194	
	~	3.4	Pedestrian Loading	205	
		3.5	Reduction in Live-Load Intensity	206	
		3.6	Longitudinal Forces	209	
		3.7	Centrifugal Force	211	
		3.8	Curb Loading	214	
		3.9	Railing Loading	214	
		3.10	Wind Loads	215	
. '		3.11	Temperature-Induced Forces	235	
		3.12	Forces from Stream Current, Floating Ice, and Drift	242	
		3.13	Earth Pressure	246	
-		3.14	Seismic Loads	247	
		3.15	Miscellaneous Loads	258	
		3.16	Combination of Loads for Design	259	
			References	263	

١,

1

4	The Load Path and Load Distribution				
	in B	ridge Superstructures	276		
	4.1	Introduction	276		
	4.2	Bridge Geometry	277		
	4.3	Diaphragms	279		
	4.4	Basic Concepts	279		
	4.5	Structural Forms and Behavioral Characteristics	281		
	4.6	Methods of Analysis	291		
	4.7	AASHTO Method of Live-Load Distribution— Slabs and Beams	292		
	4.8	Distribution of Live Load in Floor Beams	318		
	4.9	Open and Filled Steel Grid Decks	324		
	4.10	Miscellaneous Topics	327		
		References	328		
5	Serv	iceability Criteria: Deflection and Fatigue	334		
	5.1	Introduction	334		
	5.2	Deflection and Depth-Span Ratios	334		
x	5.3	Fatigue in Steel Bridges	350		
	5.4	Fatigue in Reinforced and Prestressed Concrete Bridges	368		
		References	374		
6	Desi	gn of Reinforced Concrete Bridges	382		
	6.1	Introduction	382		
	6.2	Materials of Construction	384		
	6.3	Design Methods	386		
	6.4	Reinforcement	397		
	6.5	Construction Details	401		
	6.6	Design of Slab Bridges	405		
	6.7	Design of T-Beam Bridges	412		
	6.8	Design of Box Girder Bridges	437		
		References	457		
7	Pres	stressed Concrete Bridges	460		
	7.1	Introduction	460		
	7.2	Terminology	461		
	7.3	Materials of Construction	462		
	7.4	Advantages and Disadvantages of Prestressed Concrete	483		

Y,

	7.5	Types of Prestressed Concrete Bridges	487
	7.6	Post-Tensioned Prestressed Concrete Bridges	538
	7.7	Precast Prestressed Concrete Composite Deck Panels	570
	7.8	Transversely and Longitudinally Prestressed Decks	575
	7.9	Continuity in Prestressed Concrete Bridges	581
	7.10	Optimization of Precast Prestressed Concrete Bridge Systems	603
	7.11	Principles of Prestressed Concrete Design	605
	7.12	Allowable Stresses	624
	7.13	Prestressing Losses	626
	7.14	Development Length of Prestressing Strands	633
	7.15	Deflections	635
	7.16	Design Examples	640
	7.17	Some Trial Design Parameters	681
		References	682
×. 8	Slab	–Steel Beam Bridges	703
	8.1	Introduction	703
	8.2	Using Steel Beams in Bridges—Advantages,	
		Disadvantages, and the Effects of Corrosion	705
, , , ,	8.3	General Design Considerations	710
1	8.4	Design of Noncomposite Steel Beam Bridges	719
	8.5	Design of Composite Steel Beam Bridges	726
	8.6	Design Methods	748
	8.7	Design of Continuous Steel Beam Bridges	. 781
	8.8	Design Aids	789
	8.9	Design Examples	793
	8.10	New Developments	890
	8.11	Bridge Deck Panels	892
		References	896
· · · 9	Plat	e Girder Bridges	909
	9.1	Introduction	909
	9.2	Historical Background	910
	9.3	Plate Girders and Bridge Superstructures	914
	9.4	Behavior of Plate Girders under Loads	931
	9.5	Buckling Considerations for Design of Plate Girders	936
	9.6	Strength under Combined Bending and Shear	1027

•

X DESIGN OF MODERN HIGHWAY BRIDGES

	9.7	Plate Girders with Stiffeners	1036
	9.8	Optimum Design of Plate Girders	1057
	9.9	Some Practical Considerations	1066
	9.10	AASHTO Criteria for Design of Plate Girders	1070
	9.11	Connections	1081
	9.12	Design Example	1087
		References	1136
10	Insp	ection, Evaluation, Rehabilitation,	
	and	Maintenance of Bridges	1153
	10.1	Introduction	1153
	10.2	Bridge Inspection	1154
	10.3	Bridge Evaluation	1156
	10.4	Bridge Rehabilitation	1162
	10.5	Maintenance of Bridges	1193
	10.6	Summary	1194
		References	1195
11	Aest	hetics of Bridges	1209
	11.1	Introduction	1209
	11.2	Philosophical Aspects of Beauty, Aesthetics, and Art	1211
	11.3	Social Impact of Bridges	1217
	11.4	Aesthetic Policies and Engineers' Training	1219
	11.5	Aesthetics and Ornamentation	1221
	11.6	Principles of Aesthetic Design	1223
	11.7	Guidelines for Aesthetic Design	1225
	11.8	Substructure	1243
	11.9	Summary	1248
		References	ľ249
Арр	endiz	K A	1255
Арр	endiy	x B	1289
Арр	endiy	K C	1315
Inde	ex		1329

١