Grundlagen der Verfahrenstechnik für Automatisierungsingenieure

Von Prof. Dr.-Ing. Manfred Engshuber und Prof. Dr.-Ing. habil. Rainer Müller

unter Mitwirkung von Doz. Dr.-Ing. Dieter Schilk und Dr.-Ing. Werner Stölzel

2., überarbeitete Auflage

Mit 142 Bildern und 33 Tabellen

Deutscher Verlag für Grundstoffindustrie Leipzig · Stuttgart

Inhaltsverzeichnis

1.	Zusammenwirken von Verfahrenstechnik und Automatisierung	11
1.1.	Notwendigkeit der Zusammenarbeit von Verfahrenstechnik	
	und Automatisierungstechnik	11
1.2.	Wechselwirkungen zwischen Gestaltung der technologischen	
	Anlage und der Automatisierungskonzeption	13
1.3.	Automatisierungsgerechte Anlagengestaltung	14
1.3.1.	Dynamische Betrachtungen bei der Konstruktion von Grund-	
	ausrüstungen	20
1.3.2.	Automatisierungsgerechte Gestaltung bei der Anlagen-	
	projektierung	22
1.3.3.	Einbeziehung der Automatisierbarkeit in die Entwurfskriterien	
	von Grundausrüstungen und Anlagen	26
1.4.	Aufgabenkategorien der Automatisierung	26
1.5.	Modellierung technologischer Prozesse	28
1.5.1.	Theoretische oder experimentelle Prozeßanalyse	28
1.5.2.	Ziele der theoretischen Prozeßanalyse	30
2.	Einordnung, Gegenstand und Gliederung der Verfahrenstechnik	34
2.1.	Stellung der Verfahrenstechnik in der Technologie	34
2.2.	Gliederung der Verfahrenstechnik	
2.3.	Systematisierung der Grundoperationen	41
2.4.	Einteilung der Stoffwandlung (Reaktionen)	41
3.	Graphische Darstellungen in der Verfahrenstechnik	45
3.1.	Grundfließbild	45
3.2.	Verfahrensfließbild	45
3.3.	Graphische Symbole und Kennzeichen für Grundausrüstungen	49
3.4.	Bildzeichen und Kennbuchstaben der MSR-Technik	52
3.5.	Rohrleitungs- und Instrumentenfließbild	58
3.6.	Ergänzende Beschreibungen	
3.7.	Darstellung von Sicherungsaufgaben	64

4.	Grundlegende Gesetzmäßigkeiten und Eigenschaften	
	von Maschinen, Apparaten und Stellgliedern	73
4.1.	Erhaltungssätze	73
4.1.1.	Erhaltungssatz der Masse	
4.1.2.	Zustandsgrößen der Energie in Gasen und Dämpfen	
4.1.3.	Erhaltungssatz der Energie	
4.2.	Gesetzmäßigkeiten bei Feststoffoperationen	
4.3.	Gesetze der Hydromechanik	
4.3.1.	Inkompressible Strömung in Rohren	
4.3.2.	Eigenschaften der Kreiselpumpen	
4.3.3.	Stellventile	
4.3.4.	Kavitation	
4.3.5.	Durchfluß bei kompressibler Strömung.	
4.3.6.	Eigenschaften von Turboverdichtern	
4.3.7.	Flüssigkeiten mit besonderem Fließverhalten	
4.3.8.	Durchfluß zäher Flüssigkeiten durch Stellventile	
4.4.	Grundgesetze der Wärmeübertragung	
4.4.1.	Formen des Wärmetransportes	
4.4.2.	Wärmedurchgang	
4.5.	Gesetze der Stoffumwandlung	
4.5.1.	Phasengleichgewichte in Einstoffsystemen	
4.5.2.	Phasengleichgewichte in Zweistoffsystemen	
4.5.3.	Reaktionsgeschwindigkeiten	
1.5.5.	reaktionsgesenwindigketten	
5.	Regelstrecken der Verfahrenstechnik und ihre Modellierung	146
5.1.	Allgemeines Vorgehen der theoretischen Prozeßanalyse	146
5.2.	Durchflußregelstrecken	
5.2.1.	Stellprinzipien und ihre elektrischen Ersatzschaltbilder	158
5.2.2.	Berechnung der Übertragungsfunktion für ein Durchflußsystem	
	mit inkompressibler Strömung	160
5.2.3.	Berechnung der Übertragungsfunktion für ein Durchflußsystem	
	mit kompressibler Strömung	164
5.3.	Temperaturregelstrecken, Behandlung instationärer Wärme-	
	übertragungsvorgänge anhand elektrischer Ersatzschaltbilder	170
5.4.	Grob vereinfachte Modellierung von Wärmeübertragern	
5.5.	Berechnung der Übertragungsfunktion von Wärmeübertragern	
	mit Hilfe partieller Differentialgleichungen und zweifacher	i
	LAPLACE-Transformation	178
5.6.	Niveauregelstrecken bei inhomogener Füllung	

5.6.1.	Dampf-Flüssigkeits-Gemisch	192
5.6.2.	Nicht mischbare Flüssigkeiten	193
5.6.3.	Feststoff-Gas-Gemisch	194
5.7.	Qualitätsregelstrecken	195
5.8.	Bemerkungen zu technischen Besonderheiten	201
6.	Ausgewählte Grundoperationen der Verfahrenstechnik	204
6.1.	Mechanische Vorgänge	204
6.1.1.	Dosieren von Feststoffen	204
6.1.2.	Vermengen	212
6.1.3.	Brechen und Mahlen von Feststoffen	216
6.2.	Hydromechanische Vorgänge	223
6.2.1.	Mischen von Gasen	224
6.2.2.	Vereinigen von Stoffen zu dispersen flüssigen Systemen	227
6.3.	Stoffaustauschvorgänge	232
6.3.1.	Adsorbieren und Desorbieren	233
6.3.2.	Rektifizieren	238
6.3.3.	Trocknen	252
6.4.	Wärmevorgänge	261
6.4.1.	Erwärmungs- und Abkühlungsvorgänge	261
6.4.2.	Wärmevorgänge mit Phasenänderung	265
6.5.	Chemische Reaktionen	
6.5.1.	Verbrennungsreaktionen	269
6.5.2.	Automatisierungslösungen für die Beheizung von Industrieöfen	
7.	Betriebsweisen, Betriebsarten	278
7.1.	Kontinuierliche Betriebsweise	278
7.2.	Diskontinuierliche Betriebsweise	279
7.3.	Betriebsarten - das unterschiedliche Betreiben einer Anlage	280
8.	Spezielle Beispiele zum Zusammenhang zwischen Verfahrens-	างา
	technik und typischen Meß- und Stelleinrichtungen	282
8.1.	Meßfehler bei der Niveaumessung infolge Dichte-	
	unterschieden	283
8.2.	Meßfehler bei der Temperaturmessung infolge Wärme-	:
	strömungen	
8.2.1.	Statische Fehler	288
822	Dynamische Meßfehler	290

8.2.3.	Näherungsbetrachtung für die Zeitkonstante eines	
	Temperaturfühlers	291
8.2.4.	Einfluß des Fühlerdurchmessers auf die Zeitkonstante	292
8.3.	Statische Kennlinien bei Stelleingriff durch Drosselung	293
8.3.1.	Heißdampftemperaturregelung durch Einspritzen als	
	Beispiel eines Stelleingriffs	295
8.3.2.	Einspritzkühler als Stellglied der Temperaturregelung	301
9.	Binäre Prozeßanalyse	304
9.1.	PETRI-Netz	304
9.2.	Funktionsplan	307
9.3.	Prozeßablaufplan	307
10.	Sicherheitstechnik und Umweltschutz.	310
Litera	turverzeichnis	314
Richtl	inien und Vorschriften	321
Verze	ichnis von Formelzeichen und Indizes	323
Sachv	vörterverzeichnis	326