Lehrstuhl für Ergonomie der Technischen Universität München

Der Einfluß von Adaptive Cruise Control Systemen auf das Fahrerverhalten

Markus Weinberger

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr.-Ing. Gottfried Sachs

Prüfer der Dissertation:

- 1. Univ.-Prof. Dr. rer. nat. Heiner Bubb
- 2. Univ.-Prof. Dr.-Ing. Klaus Bender

Die Dissertation wurde am 27. 12. 2000 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. 5. 2001 angenommen.

Inhalt

Α	bkürzungsverzeichnis	7
Zι	usammenfassung	9
1	Einleitung	11
2	Systembeschreibung ACC	13
	2.1 Funktionsweise von ACC	13
	2.1.1 Aufbereitung der Radarsignale	13
	2.1.2 Zielobjektauswahl und Regelung	14
	2.1.3 Kommunikation mit anderen Steuergeräten	15
	2.2 Funktionsgrenzen	16
	2.3 Bedienung von ACC	19
	2.3.1 Anzeigen	20
	2.3.2 Multifunktionslenkrad	21
	2.3.3 Weitere Eingriffsmöglichkeiten des Fahrers	23
3	Klassifizierung von Fahrerassistenzsystemen	25
	3.1 Eingriffsebene	
	3.1.1 Eingriffsebenen von ACC	27
	3.2 Art der Unterstützung	32
	3.3 Einflußgebiete von Fahrerassistenzsystemen	33
	3.3.1 Komfort	34
	3.3.2 Sicherheit	35
	3.3.3 Ökonomie/Ökologie	40
	3.3.4 Soziale Aspekte	41
4	Stand der Forschung	43
	4.1 Simulatorstudien und Untersuchungen im öffentlichen	-
	Straßenverkehr	43
	4.2 Ergebnisse der bisherigen Untersuchungen	44
5	Versuchsaufbau	49
	5.1 Methodik zur Datenerfassung	49
	5.1.1 Befragung der Versuchsperson	
	5.1.2 Langzeitmeßsystem FESTUS	50
	5.1.3 Videomeßsystem ASSIST	53
	5.2 Zeitlicher Ablauf	57

	5.2.1 Erster Versuchstag	. 57
	5.2.2 Wöchentliche Meßfahrten und Befragung	. 59
	5.2.3 Versuchsabschluß	
	5.3 Die Versuchsstrecke	. 60
	5.4 Die Versuchsfahrzeuge	
	5.5 Die Versuchspersonen	. 61
	5.6 Statistische Methoden	
	5.6.1 Einfaktorielle Varianzanalyse und Scheffé-Test	. 65
	5.6.2 T-Test	. 65
	5.6.3 Korrelation nach Pearson	. 66
	5.6.4 Signifikanzniveau	. 66
6	Ergebnisse	. 69
	6.1 Lernphase	. 69
	6.1.1 Lernphase in Bezug auf Anzeige- und Bedienelemente	. 70
	6.1.2 Einschätzung von Übernahmesituationen	. 71
	6.1.3 Dauer der Lernphase – Zusammenfassung der Ergebnisse	. 82
	6.2 Bedientätigkeiten des Fahrers	. 84
	6.2.1 Auswertungsmethodik für die Fahreraktivitäten	. 84
	6.2.2 Deaktivierung der Adaptive Cruise Control	. 85
	6.2.3 Wahl der Wunschgeschwindigkeit	. 88
	6.2.4 Wahl des Sollabstandes	. 91
	6.2.5 Übertreten von ACC durch Betätigung des Gaspedals	. 96
	6.2.6 Ermittlung des Zeitabstandes zwischen zwei	
	Bedienvorgängen	100
	6.2.7 Bewertung der Ergebnisse nach Komfort-	
	und Sicherheitsaspekten	103
	6.3 Übernahmesituationen	107
	6.3.1 Beschreibung der verschiedenen Übernahmesituationen	107
	6.3.2 Allgemeine Ergebnisse zu Übernahmesituationen	111
	6.3.3 Vergleich verschiedener Situationstypen	117
	6.3.4 Beurteilung der Ergebnisse bezüglich	
	der Übernahmesituationen	133
7	Abschließende Bewertung	135
Α	nhang Erläuterung des ACC-Systems	139
Α	nhang Ergebnisse der Fragebögen	145

Anhang Originalfragebogen	173
Literatur	191

The state of the s

.