VI V 3 50.1

# **BOND IN CONCRETE**

Edited by

P. BARTOS

Department of Civil Engineering, Paisley College of Technology, Scotland



Institut f. Massivbau der Techn. Hochschule Darmstadt

Inv.-Nr. 7581

APPLIED SCIENCE PUBLISHERS LONDON

## CONTENTS

| Prefa           | ce                                                                                                                                            | v   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Opening Address |                                                                                                                                               |     |
| W.              | G. N. GEDDES, CBE, Chairman (Institution of Structural Engineers, Scotland)                                                                   |     |
|                 |                                                                                                                                               |     |
| Sect            | ion 1: Cement Paste and Aggregate                                                                                                             |     |
| 1.              | Strength and interface bond in concrete                                                                                                       | . 4 |
| 2.              | Research into the mechanical behaviour of concrete made with portland cement and fly-ashes                                                    | 15  |
|                 | Ion Teoreanu, Lažar D. Nicolescu and Stephan Enescu (Romania)                                                                                 |     |
| 3.              | Contact zone between cement paste and aggregate<br>A. CARLES-GIBERGUES, J. GRANDET and J. P. OLLIVIER (France)                                | 24  |
| 4.              | Morphology of interface between zeolite aggregate and cement paste                                                                            | 34  |
| Sect            | ion 2: Fibrous Reinforcement                                                                                                                  |     |
| 1.              | Structural and mechanical aspects of debonding of a steel bar from a cementitious                                                             |     |
|                 | matrix.<br>P. STROEVEN and G. DE WIND ( <i>Netherlands</i> )                                                                                  | 40  |
| 2.              | Investigation of steel fibre debonding processes in cement paste J. POTRZEBOWSKI (Poland)                                                     | 51  |
| 3.              | Bond in glass reinforced cements                                                                                                              | 60  |
| 4.              | On the calculation of fracture energy in steel fibre reinforced concrete elements subjected<br>to bending .<br>A. M. BRANDT ( <i>Poland</i> ) | 73  |
| Sect            | tion 3: Fundamental Relationships                                                                                                             |     |

| 1. | Shear-confinement interaction at the bar-to-concrete interface<br>PIETRO G. GAMBAROVA ( <i>Italy</i> ) and CENGIZ KARAKOÇ ( <i>Turkey</i> ) | • | 82  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 2. | Tension stiffening: A fracture mechanics approach                                                                                           | • | 97  |
| 3. | On the effective axial stiffness of a bar in cracked concrete                                                                               |   | 107 |

viii

#### Section 4: Methods of Testing

| 1. | A new type of bond test specimen<br>D. H. JIANG (People's Republic of China), A. T. ANDONIAN and S. P. SHAH (USA)                    | 127 |
|----|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2. | Bond-slip characteristics of plain reinforcing bars under varying stress<br>E. W. BENNETT and I. G. SNOUNOU ( <i>Great Britain</i> ) | 140 |

### Section 5: Cyclic, Impact and Sustained Loading

| 1. | Local bond strength of concrete for cyclic reversed loading                                                                                   | 151         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2. | On the reversibility properties of bond in concrete                                                                                           | 162         |
| 3. | Bond stress-slip behaviour of deformed bars, plain bars and strands under impact loading<br>E. Vos and H. W. REINHARDT ( <i>Netherlands</i> ) | 17 <b>3</b> |
| 4. | Time-dependence of bond                                                                                                                       | 183         |
| 5. | Bond relaxation and bond-slip creep under monotonic and cyclic actions<br>P. PLAINĒS, T. TASSIOS and E. VINTZĒLEOU (Greece)                   | 193         |

#### Section 6: Thermal Effects and Corrosion

| 1. | The effect of elevated temperature on the bond behaviour of embedded reinforcing bars<br>H. SAGER and F. S. ROSTÁSY (Federal Republic of Germany)                     | 206 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2. | The behaviour of reinforced concrete at elevated temperatures with particular reference<br>to bond strength<br>R. ROYLES, P. D. MORLEY and M. R. KHAN (Great Britain) | 217 |
| 3. | Changes in bond behaviour due to elevated temperatures                                                                                                                | 229 |
| 4. | Influence of sodium chloride on the concrete/steel and galvanised steel bond<br>N. Sakamoto and N. Iwasaki (Japan)                                                    | 239 |

ことにははないのないないで、大学のないで、などのないのないで、

## Section 7: Transverse Tension and Compression

| 1. |   | Influence of tensile release in concrete on transfer bond of reinforcement bars<br>V. NAVARATNARAJAH ( <i>Malaysia</i> )    | • | 250 |
|----|---|-----------------------------------------------------------------------------------------------------------------------------|---|-----|
| 2. | • | Effect of lateral pressure on bond of reinforcing bars in concrete P. J. ROBINS and I. G. STANDISH ( <i>Great Britain</i> ) | • | 262 |

## Section 8: Properties of Concrete and Construction Methods

| 1.  | Densified cement matrix improves bond with reinforcing steel                                                                                           | 273 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.  | A new concrete mixing method for improving bond mechanism                                                                                              | 282 |
| 3.  | Bond performance of ribbed bars (pull-out-tests): Influence of concrete composition<br>and consistency<br>H. MARTIN (Federal Republic of Germany)      | 289 |
| 4.  | Effect of casting position on bond                                                                                                                     | 300 |
| 5.  | Effect of construction procedures on bond strength in bridge decks                                                                                     | 308 |
| Sec | tion 9: Laps, Splices and Transverse Reinforcement                                                                                                     |     |
| 1.  | Tensile lap splices with confining reinforcement                                                                                                       | 318 |
| 2.  | Bond capacity of deformed bars due to splitting of surrounding concrete<br>SHIRO MORITA and SHIGERU FUJII (Japan)                                      | 331 |
| 3.  | Bond performance of ribbed reinforcing bars in lapped joints JOHN CAIRNS and KEITH JONES (Great Britain)                                               | 342 |
| 4.  | Design of lapped splices of welded wire fabric                                                                                                         | 353 |
| Sec | tion 10: Structural Elements and Details                                                                                                               |     |
| 1.  | Influence of impact loading on bond                                                                                                                    | 363 |
| 2.  | Experimental determination of anchoring length in the column-foundation joints .<br>ENES SEFEROVIC (Yugoslavia)                                        | 368 |
| 3.  | Compression anchorage stresses in bases                                                                                                                | 380 |
| 4.  | Effect on bond between concrete and deformed bar on mechanical behaviour of reinforced concrete columns.<br>Y. TANIGAWA, K. BABA and K. YAMADA (Japan) | 388 |
| 5.  | Effects of driving-in on bond in concrete piles                                                                                                        | 409 |
| 6.  | Bond of seven-wire strand for prestressed steel<br>T. JAVOR and J. LAZAR ( <i>Czechoslovakia</i> )                                                     | 415 |

~ .

#### Section 11: Design Codes and Practice

| 1. | Interaction between anchorage of bond, hooks and welded transverse bars; basis for the design in the German code DIN 1045 and CEB-FIP model code<br>P. SCHIEBL (Federal Republic of Germany) | 424 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2. | Bond strength of deformed bars<br>G. C. REYNOLDS and A. W. BEEBY (Great Britain)                                                                                                             | 434 |
| 3. | Bond, and control of cracking in reinforced concrete                                                                                                                                         | 446 |
| 4. | Probabilistic aspects of bond-governed problems based on local bond force-slip diagrams determined by a new method<br>ANDOR WINDISCH (Hungary)                                               | 458 |

していていたいというというためであるとなるとないであるとないであるとないであるというできたのであるというできたのであるというできたのであるというないできたのであるというないできたのであるというないできたのであるというないであるというないです。

х