Real-Time Collision Detection

Christer Ericson
Sony Computer Entertainment America
Contents

List of Figures xxvi
Preface xxxvii

Chapter 1

Introduction

1.1 Content Overview 2
1.1.1 Chapter 2: Collision Detection Design Issues 2
1.1.2 Chapter 3: A Math and Geometry Primer 2
1.1.3 Chapter 4: Bounding Volumes 3
1.1.4 Chapter 5: Basic Primitive Tests 3
1.1.5 Chapter 6: Bounding Volume Hierarchies 3
1.1.6 Chapter 7: Spatial Partitioning 3
1.1.7 Chapter 8: BSP Tree Hierarchies 4
1.1.8 Chapter 9: Convexity-based Methods 4
1.1.9 Chapter 10: GPU-assisted Collision Detection 4
1.1.10 Chapter 11: Numerical Robustness 4
1.1.11 Chapter 12: Geometrical Robustness 4
1.1.12 Chapter 13: Optimization 5

1.2 About the Code 5

Chapter 2

Collision Detection Design Issues 7

2.1 Collision Algorithm Design Factors 7
2.2 Application Domain Representation 8
2.2.1 Object Representations 8
2.2.2 Collision Versus Rendering Geometry 11
2.2.3 Collision Algorithm Specialization 12

2.3 Types of Queries 13
2.4 Environment Simulation Parameters 14
Chapter 3

A Math and Geometry Primer 23

3.1 Matrices 23
 3.1.1 Matrix Arithmetic 25
 3.1.2 Algebraic Identities Involving Matrices 26
 3.1.3 Determinants 27
 3.1.4 Solving Small Systems of Linear Equation Using Cramer’s Rule 29
 3.1.5 Matrix Inverses for 2 \times 2 and 3 \times 3 Matrices 31
 3.1.6 Determinant Predicates 32
 3.1.6.1 ORIENT2D(A, B, C) 32
 3.1.6.2 ORIENT3D(A, B, C, D) 33
 3.1.6.3 INCIRCLE2D(A, B, C, D) 34
 3.1.6.4 INSPHERE(A, B, C, D, E) 34

3.2 Coordinate Systems and Points 35

3.3 Vectors 35
 3.3.1 Vector Arithmetic 37
 3.3.2 Algebraic Identities Involving Vectors 38
 3.3.3 The Dot Product 39
 3.3.4 Algebraic Identities Involving Dot Products 40
 3.3.5 The Cross Product 41
 3.3.6 Algebraic Identities Involving Cross Products 44
 3.3.7 The Scalar Triple Product 44
 3.3.8 Algebraic Identities Involving Scalar Triple Products 46

3.4 Barycentric Coordinates 46

3.5 Lines, Rays, and Segments 53

3.6 Planes and Halfspaces 54
3.7 Polygons 56
 3.7.1 Testing Polygonal Convexity 59

3.8 Polyhedra 62
 3.8.1 Testing Polyhedral Convexity 64

3.9 Computing Convex Hulls 64
 3.9.1 Andrew's Algorithm 65
 3.9.2 The Quickhull Algorithm 66

3.10 Voronoi Regions 69

3.11 Minkowski Sum and Difference 70

3.12 Summary 72

Chapter 4

Bounding Volumes 75

4.1 Desirable BV Characteristics 76

4.2 Axis-aligned Bounding Boxes (AABBs) 77
 4.2.1 AABB-AABB Intersection 79
 4.2.2 Computing and Updating AABBs 81
 4.2.3 AABB from the Object Bounding Sphere 82
 4.2.4 AABB Reconstructed from Original Point Set 82
 4.2.5 AABB from Hill-climbing Vertices of the Object Representation 84
 4.2.6 AABB Recomputed from Rotated AABB 86

4.3 Spheres 88
 4.3.1 Sphere-sphere Intersection 88
 4.3.2 Computing a Bounding Sphere 89
 4.3.3 Bounding Sphere from Direction of Maximum Spread 91
 4.3.4 Bounding Sphere Through Iterative Refinement 98
 4.3.5 The Minimum Bounding Sphere 99

4.4 Oriented Bounding Boxes (OBBs) 101
 4.4.1 OBB-OBB Intersection 101
 4.4.2 Making the Separating-axis Test Robust 106
 4.4.3 Computing a Tight OBB 107
 4.4.4 Optimizing PCA-based OBBs 109
 4.4.5 Brute-force OBB Fitting 112

4.5 Sphere-swept Volumes 112
 4.5.1 Sphere-swept Volume Intersection 114
 4.5.2 Computing Sphere-swept Bounding Volumes 115
4.6 Halfspace Intersection Volumes 115
 4.6.1 Kay–Kajiya Slab-based Volumes 116
 4.6.2 Discrete-orientation Polytopes (k-DOPs) 117
 4.6.3 k-DOP–k-DOP Overlap Test 118
 4.6.4 Computing and Realigning k-DOPs 119
 4.6.5 Approximate Convex Hull Intersection Tests 121
4.7 Other Bounding Volumes 122
4.8 Summary 123

Chapter 5

Basic Primitive Tests 125

5.1 Closest-point Computations 125
 5.1.1 Closest Point on Plane to Point 126
 5.1.2 Closest Point on Line Segment to Point 127
 5.1.2.1 Distance of Point To Segment 129
 5.1.3 Closest Point on AABB to Point 130
 5.1.3.1 Distance of Point to AABB 131
 5.1.4 Closest Point on OBB to Point 132
 5.1.4.1 Distance of Point to OBB 134
 5.1.4.2 Closest Point on 3D Rectangle to Point 135
 5.1.5 Closest Point on Triangle to Point 136
 5.1.6 Closest Point on Tetrahedron to Point 142
 5.1.7 Closest Point on Convex Polyhedron to Point 145
 5.1.8 Closest Points of Two Lines 146
 5.1.9 Closest Points of Two Line Segments 148
 5.1.9.1 2D Segment Intersection 151
 5.1.10 Closest Points of a Line Segment and a Triangle 153
 5.1.11 Closest Points of Two Triangles 155

5.2 Testing Primitives 156
 5.2.1 Separating-axis Test 156
 5.2.1.1 Robustness of the Separating-axis Test 159
 5.2.2 Testing Sphere Against Plane 160
 5.2.3 Testing Box Against Plane 161
 5.2.4 Testing Cone Against Plane 164
 5.2.5 Testing Sphere Against AABB 165
5.2.6 Testing Sphere Against OBB 166
5.2.7 Testing Sphere Against Triangle 167
5.2.8 Testing Sphere Against Polygon 168
5.2.9 Testing AABB Against Triangle 169
5.2.10 Testing Triangle Against Triangle 172

5.3 Intersecting Lines, Rays, and (Directed) Segments 175
 5.3.1 Intersecting Segment Against Plane 175
 5.3.2 Intersecting Ray or Segment Against Sphere 177
 5.3.3 Intersecting Ray or Segment Against Box 179
 5.3.4 Intersecting Line Against Triangle 184
 5.3.5 Intersecting Line Against Quadrilateral 188
 5.3.6 Intersecting Ray or Segment Against Triangle 190
 5.3.7 Intersecting Ray or Segment Against Cylinder 194
 5.3.8 Intersecting Ray or Segment Against Convex Polyhedron 198

5.4 Additional Tests 201
 5.4.1 Testing Point in Polygon 201
 5.4.2 Testing Point in Triangle 203
 5.4.3 Testing Point in Polyhedron 206
 5.4.4 Intersection of Two Planes 207
 5.4.5 Intersection of Three Planes 211

5.5 Dynamic Intersection Tests 214
 5.5.1 Interval Halving for Intersecting Moving Objects 215
 5.5.2 Separating Axis Test for Moving Convex Objects 219
 5.5.3 Intersecting Moving Sphere Against Plane 219
 5.5.4 Intersecting Moving AABB Against Plane 222
 5.5.5 Intersecting Moving Sphere Against Sphere 223
 5.5.6 Intersecting Moving Sphere Against Triangle (and Polygon) 226
 5.5.7 Intersecting Moving Sphere Against AABB 228
 5.5.8 Intersecting Moving AABB Against AABB 230

5.6 Summary 232

Chapter 6

Bounding Volume Hierarchies 235

6.1 Hierarchy Design Issues 236
 6.1.1 Desired BVH Characteristics 236
6.1.2 Cost Functions 237
6.1.3 Tree Degree 238

6.2 Building Strategies for Hierarchy Construction 239
6.2.1 Top-down Construction 240
 6.2.1.1 Partitioning Strategies 241
 6.2.1.2 Choice of Partitioning Axis 243
 6.2.1.3 Choice of Split Point 244
6.2.2 Bottom-up Construction 245
 6.2.2.1 Improved Bottom-up Construction 247
 6.2.2.2 Other Bottom-up Construction Strategies 249
 6.2.2.3 Bottom-up \(n \)-ary Clustering Trees 250
6.2.3 Incremental (Insertion) Construction 251
 6.2.3.1 The Goldsmith–Salmon Incremental Construction Method 252

6.3 Hierarchy Traversal 253
6.3.1 Descent Rules 254
6.3.2 Generic Informed Depth-first Traversal 256
6.3.3 Simultaneous Depth-first Traversal 259
6.3.4 Optimized Leaf-direct Depth-first Traversal 260

6.4 Sample Bounding Volume Hierarchies 261
6.4.1 OBB Trees 261
6.4.2 AABB Trees and BoxTrees 262
6.4.3 Sphere Tree Through Octree Subdivision 263
6.4.4 Sphere Tree from Sphere-covered Surfaces 264
6.4.5 Generate-and-Prune Sphere Covering 264
6.4.6 \(k \)-dop Trees 265

6.5 Merging Bounding Volumes 266
6.5.1 Merging Two AABBs 267
6.5.2 Merging Two Spheres 267
6.5.3 Merging Two OBBs 269
6.5.4 Merging Two \(k \)-DOPs 269

6.6 Efficient Tree Representation and Traversal 270
6.6.1 Array Representation 270
6.6.2 Preorder Traversal Order 272
6.6.3 Offsets Instead of Pointers 273
6.6.4 Cache-friendlier Structures (Nonbinary Trees) 274
6.6.5 Tree Node and Primitive Ordering 275
6.6.6 On Recursion 276
6.6.7 Grouping Queries 278
6.7 Improved Queries Through Caching 280
 6.7.1 Surface Caching: Caching Intersecting Primitives 280
 6.7.2 Front Tracking 282
6.8 Summary 284

Chapter 7

Spatial Partitioning 285

7.1 Uniform Grids 285
 7.1.1 Cell Size Issues 286
 7.1.2 Grids as Arrays of Linked Lists 287
 7.1.3 Hashed Storage and Infinite Grids 288
 7.1.4 Storing Static Data 290
 7.1.5 Implicit Grids 291
 7.1.6 Uniform Grid Object-Object Test 294
 7.1.6.1 One Test at a Time 295
 7.1.6.2 All Tests at a Time 297
 7.1.7 Additional Grid Considerations 299
7.2 Hierarchical Grids 300
 7.2.1 Basic Hgrid Implementation 302
 7.2.2 Alternative Hierarchical Grid Representations 306
 7.2.3 Other Hierarchical Grids 307
7.3 Trees 307
 7.3.1 Octrees (and Quadtrees) 308
 7.3.2 Octree Object Assignment 309
 7.3.3 Locational Codes and Finding the Octant for a Point 313
 7.3.4 Linear Octrees (Hash-based) 314
 7.3.5 Computing the Morton Key 316
 7.3.6 Loose Octrees 318
 7.3.7 k-d Trees 319
 7.3.8 Hybrid Schemes 321
7.4 Ray and Directed Line Segment Traversals 322
7.4.1 k-d Tree Intersection Test 322
7.4.2 Uniform Grid Intersection Test 324

7.5 Sort and Sweep Methods 329
7.5.1 Sorted Linked-list Implementation 330
7.5.2 Array-based Sorting 336

7.6 Cells and Portals 338

7.7 Avoiding Retesting 341
7.7.1 Bit Flags 341
7.7.2 Time Stamping 342
7.7.3 Amortized Time Stamp Clearing 344

7.8 Summary 346

Chapter 8

BSP Tree Hierarchies
8.1 BSP Trees 349
8.2 Types of BSP Trees 351
8.2.1 Node-storing BSP Trees 351
8.2.2 Leaf-storing BSP Trees 352
8.2.3 Solid-leaf BSP Trees 354
8.3 Building the BSP Tree 355
8.3.1 Selecting Dividing Planes 358
8.3.2 Evaluating Dividing Planes 361
8.3.3 Classifying Polygons with Respect to a Plane 364
8.3.4 Splitting Polygons Against a Plane 367
8.3.5 More on Polygon Splitting Robustness 372
8.3.6 Tuning BSP Tree Performance 373
8.4 Using the BSP Tree 374
8.4.1 Testing a Point Against a Solid-leaf BSP Tree 374
8.4.2 Intersecting a Ray Against a Solid-leaf BSP Tree 376
8.4.3 Polytope Queries on Solid-leaf BSP Trees 378
8.5 Summary 381

Chapter 9

Convexity-based Methods
9.1 Boundary-based Collision Detection 383
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Closest-features Algorithms</td>
<td>385</td>
</tr>
<tr>
<td>9.2.1</td>
<td>The V-Clip Algorithm</td>
<td>386</td>
</tr>
<tr>
<td>9.3</td>
<td>Hierarchical Polyhedron Representations</td>
<td>388</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The Dobkin–Kirkpatrick Hierarchy</td>
<td>389</td>
</tr>
<tr>
<td>9.4</td>
<td>Linear and Quadratic Programming</td>
<td>391</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Linear Programming</td>
<td>391</td>
</tr>
<tr>
<td>9.4.1.1</td>
<td>Fourier–Motzkin Elimination</td>
<td>394</td>
</tr>
<tr>
<td>9.4.1.2</td>
<td>Seidel’s Algorithm</td>
<td>396</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Quadratic Programming</td>
<td>398</td>
</tr>
<tr>
<td>9.5</td>
<td>The Gilbert–Johnson–Keerthi Algorithm</td>
<td>399</td>
</tr>
<tr>
<td>9.5.1</td>
<td>The Gilbert–Johnson–Keerthi Algorithm</td>
<td>400</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Finding the Point of Minimum Norm in a Simplex</td>
<td>403</td>
</tr>
<tr>
<td>9.5.3</td>
<td>GJK, Closest Points and Contact Manifolds</td>
<td>405</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Hill Climbing for Extreme Vertices</td>
<td>405</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Exploiting Coherence by Vertex Caching</td>
<td>407</td>
</tr>
<tr>
<td>9.5.6</td>
<td>Rotated Objects Optimization</td>
<td>408</td>
</tr>
<tr>
<td>9.5.7</td>
<td>GJK for Moving Objects</td>
<td>408</td>
</tr>
<tr>
<td>9.6</td>
<td>The Chung–Wang Separating-vector Algorithm</td>
<td>410</td>
</tr>
<tr>
<td>9.7</td>
<td>Summary</td>
<td>412</td>
</tr>
</tbody>
</table>

Chapter 10

GPU-assisted Collision Detection

10.1 Interfacing with the GPU | 414 |
10.1.1 Buffer Readbacks	414
10.1.2 Occlusion Queries	416
10.2 Testing Convex Objects	416
10.3 Testing Concave Objects	420
10.4 GPU-based Collision Filtering	423
10.5 Summary	426

Chapter 11

Numerical Robustness

11.1 Robustness Problem Types | 427 |
| 11.2 Representing Real Numbers | 429 |
| 11.2.1 The IEEE-754 Floating-point Formats | 431 |
Chapter 11

11.2.2 Infinity Arithmetic 435
11.2.3 Floating-point Error Sources 438

11.3 Robust Floating-point Usage 441
 11.3.1 Tolerance Comparisons for Floating-point Values 441
 11.3.2 Robustness Through Thick Planes 444
 11.3.3 Robustness Through Sharing of Calculations 446
 11.3.4 Robustness of Fat Objects 448

11.4 Interval Arithmetic 448
 11.4.1 Interval Arithmetic Examples 450
 11.4.2 Interval Arithmetic in Collision Detection 451

11.5 Exact and Semi-exact Computation 452
 11.5.1 Exact Arithmetic Using Integers 453
 11.5.2 Integer Division 457
 11.5.3 Segment Intersection Using Integer Arithmetic 459

11.6 Further Suggestions for Improving Robustness 462
11.7 Summary 463

Chapter 12

Geometrical Robustness 465

12.1 Vertex Welding 466
12.2 Computing Adjacency Information 474
 12.2.1 Computing a Vertex-to-Face Table 477
 12.2.2 Computing an Edge-to-Face Table 479
 12.2.3 Testing Connectedness 482

12.3 Holes, Cracks, Gaps and T-Junctions 484

12.4 Merging Co-planar Faces 487
 12.4.1 Testing Co-planarity of Two Polygons 489
 12.4.2 Testing Polygon Planarity 491

12.5 Triangulation and Convex Partitioning 495
 12.5.1 Triangulation by Ear Cutting 496
 12.5.1.1 Triangulating Polygons with Holes 499
 12.5.2 Convex Decomposition of Polygons 500
 12.5.3 Convex Decomposition of Polyhedra 502
 12.5.4 Dealing with “Nondecomposable” Concave Geometry 506