Dynamic Models for Structural Plasticity

With 175 Figures

Springer-Verlag London Berlin Heidelberg New York Paris Tokyo Hong Kong Barcelona Budapest

Contents

List o	f Symb	ols	xvii
1	Elasto	plastic and Viscoplastic Constitutive	
		ons	1
1.1	Stress Resultants and Generalized Stress —		
	Deform	nations and Generalized Strain	1
1.2	Pure B	ending of Rate-Independent Bar	2
	1.2.1	Kinematics of Deformation	2
	1.2.2	Elastic Constitutive Equation	4
	1.2.3	Stress Resultants (Axial Force and Bending	
		Moment)	4
	1.2.4	Elastic-Plastic Constitutive Equations	5
	1.2.5	Elastic-Power Law Hardening Constitutive	
		Equations	9
1.3	Pure B	ending of Rate-Dependent Bar	9
	1.3.1	Strain-Rate Dependent Constitutive Equations	9
1.4	Interaction Yield Functions and Associated Plastic		
	Flow		12
	1.4.1	Elastic Limit for Bending and Tension	12
	1.4.2	Fully Plastic Limit Surface for Bending and	
		Tension in Elastic-Perfectly Plastic Bar	12
	1.4.3	Yield and Fully Plastic Stress Condition	15
	1.4.4	Associated Flow Rule for Plastic Deformations.	16
	1.4.5	Separated Yield Functions and Separated Plastic	
		Flow	18
1.5	Interaction Yield Surfaces Including Shear		
	1.5.1	Tension, Shear and Bending in Rectangular	
		Cross-Section	19
	1.5.2	Tension, Torsion and Bending in Circular	
		Cross-Section	20
1.6		Springback	23
	1.6.1	Pure Bending	23
	1.6.2	Bending and Tension	25
Refer	ences		27

xii Contents

2			29
2.1	Kinemat	tics	29
,	2.1.1	Inertia Properties of Cross-Section	31
2.2	Balance	of Forces	31
	2.2.1	Stress Resultants and Generalized Stresses	31
	2.2.2	Equations of Motion	32
2.3		e of Virtual Velocity	34
		Rate of Change for Kinetic Energy of System	35
		Rate of Change for Kinetic Energy of	
		Kinematically Admissible Velocity Field \dot{W}_i^c	35
		Extremal Principles for Complete Solution	36
2.4		For Rigid-Perfectly Plastic Solids and	
		Structures	37
		Upper and Lower Bounds on Static Collapse	٥,
		Force	37
		Lower Bound on Dynamic Response Period	38
		Upper Bound on Dynamic Response Period	39
		Lower Bound on Final Displacement	40
		Upper Bound on Final Displacement	41
2.5		c Modes Of Deformation	44
2.5	•	Modal Solutions	44
		Properties of Modes	44
		Mode Approximations for Structural Response	77
		to Impulsive Loading	47
Defer			48
Refer	ciicos		70
3		Deflection	51
3.1		lastic-Plastic Deflections	51
		Elastic Deflections	52
		Deflection of Elastic-Perfectly Plastic	
		Cantilever	54
		Deflection of Elastic-Linear Strain Hardening	
		Cantilever	55
	3.1.4	Residual Deflection After Elastic Unloading	58
	3.1.5	Elastoplastic Beam-Columns	61
3.2		lastic-Plastic Deflections	63
		Elastica: Large Elastic Deflection	63
	3.2.2	Plastica: Large Plastic Deflection	67
Refer	ences	• • • • • • • • • • • • • • • • • • • •	72
4	Dynami	ic Rigid-Plastic Response	73
4.1	Step I o	ading	73
4.1	4.1.1	adingStatic and Dynamic Loadings	73
		Moderate Dynamic Load $(F_c < F < 3F_c)$	75 78
4.2		Intense Dynamic Load $(F > 3F_c)$	78
4.2		rular Pulse Loading	80
	4.2.1 4.2.2	Three Phases in Response of Cantilever	80
	4.2.2	Deformed Shape	84
		Energy Dissipation	85 87
	→.∠. →	O Y 11 U D 31 3	0/

4.3		es of Travelling Hinges	88
4.4	Genera	al Pulse Loading	90
	4.4.1	General Considerations	90
	4.4.2	Example: Linearly Decaying Pulse	93
	4.4.3	Equivalent Replacement of Arbitrary Pulse	94
4.5	Impact	t on Cantilever	96
	4.5.1	Problem and Assumptions	97
	4.5.2	Changing Pattern of Deformation	98
	4.5.3	Acceleration, Force and Bending Moment	101
	4.5.4	Deformed Shape	103
	4.5.5	Energy Dissipation	105
	4.5.6	Modal Approximation	106
Refe	rences .	**	110
5	Secon	d-Order Effects on Dynamic Response	111
5.1		-Rate Effect	111
	5.1.1	Impulsive Load on Viscoplastic Cantilever	111
	5.1.2	Elementary Estimates of the Effect of Strain-Rate	
		on Final Deformation	117
5.2	Strain	Hardening (Strain Softening) Effect	120
	5.2.1	Introduction	120
	5.2.2	Elementary Effect of Strain Hardening on Final	
		Deformation	121
	5.2.3	Dynamic Analysis of Strain Hardening and	
		Strain Softening Cantilevers	123
5.3	Effects	s of Transverse Shear and Rotary Inertia	132
0.0	5.3.1	Interface Conditions for Concentrated Mass	132
	5.3.2	Shear Deformation Adjacent to Colliding	102
		Particle	134
	5.3.3	Shear and Rotary Inertia of Finite Size	
		Colliding Missile	139
	5.3.4	Shear Rupture due to Impact	144
	5.3.5	Measurements of Energy for Shear Rupture	146
5.4		of Large Deflection/	149
5.1	5.4.1	General Considerations	149
	5.4.2	Large Deflection of Impulsively Loaded	177
	3.7.2	Cantilever	150
	5.4.3	Methods of Approximating Large Deflection	150
	3.4.3	Effects	153
	5.4.4	Effect of Centripetal Acceleration on Bending	133
	3.4.4	Moment Distribution	155
5.5	Effort	of Elastic Deformation	157
5.5	5.5.1	General Considerations	157
			137
	5.5.2	Mass-Spring Finite Difference Structural 158	150
	5.5.3	Model (MS-FD)	158
	3.3.3		160
	E E 1	Model (TB-FE)	163
	5.5.4	Dynamic Deformation of Elastic-Plastic	164
		Cantilever from Impact	164

	5.5.5	Effect of Elastic Deformation at Root of	
		Cantilever	173
	5.5.6	Remarks	181
5.6	Accura	acy of Rigid-Plastic Analyses	182
	5.6.1	Accuracy of Rigid-Plastic Analysis Estimated	
		by Single DoF System	182
	5.6.2	Convergence to Dynamic Plastic Mode Studied	
		by Two DoF System	184
	5.6.3	Remarks	187
Refer	ences .		188
6	More	Complex Configurations	191
6.1		al Considerations	192
	6.1.1	Extremal Properties of Yield Function at Plastic	
		Hinge	192
	6.1.2	Differentiability of Arbitrary Functions at	
		Plastic Hinge	193
	6.1.3	Differentiability of Kinematic Variables at	
		Plastic Hinge	194
	6.1.4	Differentiability of Generalized Stresses at	
		Plastic Hinge	196
	6.1.5	Differentiability of Yield Function at Plastic	
		Hinge	197
6.2	Straig	ht Cantilevers with Smoothly Varying	
	_	Sections	199
	6.2.1	Yield Function and Conditions at Plastic	
		Hinge	199
	6.2.2	Suddenly Applied Steady Force at Tip of	
		Tapered Cantilever: An Example	200
6.3	Obliqu	ue Impact on Straight Cantilever	204
	6.3.1	Problem and Assumptions	204
	6.3.2	Formulation Based on Single Hinge	
		Mechanism	205
	6.3.3	Solution Based on Single-Hinge Mechanism	212
6.4	Circul	ar Arc Cantilever Subjected to In-plane Step	
	Force		215
	6.4.1	Engineering Background and Assumptions	215
	6.4.2	Radial Force at Tip	217
	6.4.3	Tangential Force at Tip	221
	6.4.4	Discussion	223
6.5	Circul	lar Arc Cantilever Subjected to In-plane Impact	224
	6.5.1	Rigid-Plastic Formulation	225
	6.5.2	Discussion of Solution	228
	6.5.3	Modal Approximation	231
6.6	Circular Arc Cantilever Subjected to Out-of-Plane		
		Force	232
	6.6.1	Equations of Motion	233
	6.6.2	Solution	235
	6.6.3	Discussion	240
67	Stann	ad ar Pant Cantilavar Subjected to Stan Force	241

Contents xv

	6.7.1	General Considerations	241
	6.7.2	Stepped Cantilever	243
	6.7.3	Bent Cantilever	246
	6.7.4	Discussion	249
6.8	Cantile	ever with an Initial Crack	250
	6.8.1	General Considerations	250
	6.8.2	Impact on Cantilever with an Initial Crack	251
	6.8.3	Crack Stability After Impact	254
	6.8.4	Numerical Example and Discussion	256
Refe	rences .		257
7	Impac	et Experiments	259
7.1		ds of Applying Dynamic Loads	259
	7.1.1	Missile Impact	259
	7.1.2	Explosive Loading	261
	7.1.3	Magnetomotive Loading	261
7.2		ling Hinges — Fiction or Fact?	262
7.3		E Effects on Plastic Deformation	265
7.4		Hardening and Strain-Rate Effects	266
	7.4.1	Mode Approximations	266
	7.4.2	Transient Analysis Including Rate Effects	270
7.5	, , , , , , , , , , , , , , , , , , ,		270
	7.5.1	Location and Mechanism of Rupture	270
	7.5.2	Measurements of Generalized Strain at	2.0
	7.2.2	Rupture	272
Refe	rences .		274
Inde	x		277