Quantum Field Theory for the Gifted Amateur

Tom Lancaster Department of Physics, University of Durham

Stephen J. Blundell Department of Physics, University of Oxford

Contents

0 Overture			1
	0.1	What is quantum field theory?	1
	0.2	What is a field?	2
	0.3	Who is this book for?	2
	0.4	Special relativity	3
	0.5	Fourier transforms	6
	0.6	Electromagnetism	7

Ι	The Universe as a set of harmonic oscillators	9	
1	Lagrangians		
	1.1 Fermat's principle	10	
	1.2 Newton's laws	10	
	1.3 Functionals	11	
	1.4 Lagrangians and least action	14	
	1.5 Why does it work?	16	
	Exercises	17	
2	Simple harmonic oscillators	19	
	2.1 Introduction	19	
	2.2 Mass on a spring	19	
	2.3 A trivial generalization	23	
	2.4 Phonons	25	
	Exercises		
3	Occupation number representation	28	
	3.1 A particle in a box	28	
	3.2 Changing the notation	29	
	3.3 Replace state labels with operators	31	
	3.4 Indistinguishability and symmetry	31	
	3.5 The continuum limit	35	
	Exercises	36	
4	Making second quantization work	37	
	4.1 Field operators	37	
	4.2 How to second quantize an operator	39	
	4.3 The kinetic energy and the tight-binding Hamiltonian	43	
	4.4 Two particles	44	

	4.5 The Hubbard model Exercises	2
п	Writing down Lagrangians	4
5	Continuous systems	5
	5.1 Lagrangians and Hamiltonians	Į
	5.2 A charged particle in an electromagnetic field	Ę
	5.3 Classical fields	1
	5.4 Lagrangian and Hamiltonian density	Ę
	Exercises	1
6	A first stab at relativistic quantum mechanics	Ę
	6.1 The Klein–Gordon equation	
	6.2 Probability currents and densities	(
	6.3 Feynman's interpretation of the negative energy st	
	6.4 No conclusions	(
	Exercises	
7	Examples of Lagrangians, or how to write down a	theory 6
	7.1 A massless scalar field	(
	7.2 A massive scalar field	(
	7.3 An external source	(
	7.4 The ϕ^4 theory	
	7.5 Two scalar fields	
	7.6 The complex scalar field	(
	Exercises	
II	II The need for quantum fields	7
8	The passage of time	7
	8.1 Schrödinger's picture and the time-evolution opera	ator
	8.2 The Heisenberg picture	,
	8.3 The death of single-particle quantum mechanics	
	8.4 Old quantum theory is dead; long live fields!	,
	Exercises	
9	Quantum mechanical transformations	7
	9.1 Translations in spacetime	,

8.3	The death of single-particle quantum mechanics	7 5
8.4	Old quantum theory is dead; long live fields!	76
Exercises		
Qua	ntum mechanical transformations	79
9.1	Translations in spacetime	79
9.2	Rotations	82
9.3	Representations of transformations	83
9.4	Transformations of quantum fields	85
9.5	Lorentz transformations	86
Exe	ccises	88
Syn	nmetry	90
10.1	Invariance and conservation	90
	8.4 Exer 9.1 9.2 9.3 9.4 9.5 Exer Sym	 8.4 Old quantum theory is dead; long live fields! Exercises Quantum mechanical transformations 9.1 Translations in spacetime 9.2 Rotations 9.3 Representations of transformations 9.4 Transformations of quantum fields

,

1

	10.2 Noether's theorem	92
	10.3 Spacetime translation	94
	10.4 Other symmetries	96
	Exercises	97
11	Canonical quantization of fields	98
11	11.1 The canonical quantization machine	98
	11.2 Normalizing factors	101
	11.3 What becomes of the Hamiltonian?	101
	11.4 Normal ordering	102
		$104 \\ 106$
	11.5 The meaning of the mode expansion Exercises	108
	LXEICISES	108
12	Examples of canonical quantization	109
	12.1 Complex scalar field theory	109
	12.2 Noether's current for complex scalar field theory	111
	12.3 Complex scalar field theory in the non-relativistic limit	112
	Exercises	116
13	Fields with many components and	
10	massive electromagnetism	117
	13.1 Internal symmetries	117
	13.2 Massive electromagnetism	120
	13.3 Polarizations and projections	$120 \\ 123$
	Exercises	125
14	Gauge fields and gauge theory	126
	14.1 What is a gauge field?	126
	14.2 Electromagnetism is the simplest gauge theory	129
	14.3 Canonical quantization of the electromagnetic field	131
	Exercises	134
15	Discrete transformations	135
	15.1 Charge conjugation	135
	15.2 Parity	136
	15.3 Time reversal	137
	15.4 Combinations of discrete and continuous transformations	139
	Exercises	142
IV	Propagators and perturbations	143
ŢŃ	r ropagators and perturbations	140
16	Propagators and Green's functions	144
	16.1 What is a Green's function?	144
	16.2 Propagators in quantum mechanics	146
	16.3 Turning it around: quantum mechanics from the	
	propagator and a first look at perturbation theory	149
	16.4 The many faces of the propagator	151
	Exercises	152

Salar Barris and Property and Property of the Property of the

17 Propagators and fields	154
17.1 The field propagator in outline	155
17.2 The Feynman propagator	156
17.3 Finding the free propagator for scalar field theory	158
17.4 Yukawa's force-carrying particles	159
17.5 Anatomy of the propagator	162
Exercises	163
18 The S-matrix	165
18.1 The S -matrix: a hero for our times	166
18.2 Some new machinery: the interaction representation	167
18.3 The interaction picture applied to scattering	168
18.4 Perturbation expansion of the S -matrix	169
18.5 Wick's theorem	171
Exercises	174
19 Expanding the S-matrix: Feynman diagrams	175
19.1 Meet some interactions	176
19.2 The example of ϕ^4 theory	177
19.3 Anatomy of a diagram	181
19.4 Symmetry factors	182
19.5 Calculations in <i>p</i> -space	183
19.6 A first look at scattering	186
Exercises	187
20 Scattering theory	188
20.1 Another theory: Yukawa's $\psi^{\dagger}\psi\phi$ interactions	188
20.2 Scattering in the $\psi^{\dagger}\psi\phi$ theory	190
20.3 The transition matrix and the invariant amplitude	192
20.4 The scattering cross-section	193
Exercises	194
V Interlude: wisdom from statistical physics	195
21 Statistical physics: a crash course	196
21.1 Statistical mechanics in a nutshell	196
21.2 Sources in statistical physics	197
21.3 A look ahead	198
Exercises	199
Exercises 22 The generating functional for fields	199 201
22 The generating functional for fields	201
22 The generating functional for fields 22.1 How to find Green's functions	201 201
22 The generating functional for fields 22.1 How to find Green's functions 22.2 Linking things up with the Gell-Mann–Low theorem	201 201 203

VI Path integrals	209
23 Path integrals: I said to him, 'You're crazy'	210
23.1 How to do quantum mechanics using path integra	ls 210
23.2 The Gaussian integral	213
23.3 The propagator for the simple harmonic oscillator	217
Exercises	220
24 Field integrals	221
24.1 The functional integral for fields	221
24.2 Which field integrals should you do?	222
24.3 The generating functional for scalar fields	223
Exercises	226
25 Statistical field theory	228
25.1 Wick rotation and Euclidean space	229
25.2 The partition function	231
25.3 Perturbation theory and Feynman rules	233
Exercises	236
26 Broken symmetry	237
26.1 Landau theory	237
26.2 Breaking symmetry with a Lagrangian	239
26.3 Breaking a continuous symmetry: Goldstone mod	es 240
26.4 Breaking a symmetry in a gauge theory	242
26.5 Order in reduced dimensions	244
Exercises	245
27 Coherent states	247
27.1 Coherent states of the harmonic oscillator	247
27.2 What do coherent states look like?	249
27.3 Number, phase and the phase operator	250
27.4 Examples of coherent states	252
Exercises	253
28 Grassmann numbers: coherent states	
and the path integral for fermions	255
28.1 Grassmann numbers	255
28.2 Coherent states for fermions	257
28.3 The path integral for fermions	257
Exercises	258
VII Topological ideas	259
29 Topological objects	260
29.1 What is topology?	260
29.2 Kinks	262
29.3 Vortices	264
Exercises	266

.....

_	ological field theory	267
30.1	Fractional statistics à la Wilczek:	
	the strange case of anyons	267
	Chern–Simons theory	269
	Fractional statistics from Chern–Simons theory	271
Exer	cises	272
VIII	Renormalization: taming the infinite	273
	ormalization, quasiparticles and the Fermi surface	
31.1	Recap: interacting and non-interacting theories	274
31.2	Quasiparticles	276
	The propagator for a dressed particle	277
31.4	Elementary quasiparticles in a metal	279
	The Landau Fermi liquid	280
Exer	rcises	284
	ormalization: the problem and its solution	28 5
	The problem is divergences	285
	The solution is counterterms	287
	How to tame an integral	288
	What counterterms mean	290
	Making renormalization even simpler	292
	Which theories are renormalizable?	293
Exer	cises	294
	ormalization in action: pagators and Feynman diagrams	29!
	How interactions change the propagator in perturbation	
33.1	theory	29
33.0	The role of counterterms: renormalization conditions	29
	The vertex function	298
	rcises	300
34 Th e	e renormalization group	302
	The problem	302

34.1	The problem	302
34.2	Flows in parameter space	304
34.3	The renormalization group method	305
34.4	Application 1: asymptotic freedom	307
34.5	Application 2: Anderson localization	308
34.6	Application 3: the Kosterlitz–Thouless transition	309
Exer	cises	312

35	Ferromagnetism: a renormalization group tutorial	313
	35.1 Background: critical phenomena and scaling	313
	35.2 The ferromagnetic transition and critical phenomena	315
Exercises		320

IX	Putting	a spin on QFT	321

36 The Dirac equation	322
36.1 The Dirac equation	322
36.2 Massless particles: left- and right-handed wave functions	323
36.3 Dirac and Weyl spinors	327
36.4 Basis states for superpositions	330
36.5 The non-relativistic limit of the Dirac equation	33 2
Exercises	334
37 How to transform a spinor	336
37.1 Spinors aren't vectors	336
37.2 Rotating spinors	337
37.3 Boosting spinors	337
37.4 Why are there four components in the Dirac equation?	339
Exercises	340
38 The quantum Dirac field	3 41
38.1 Canonical quantization and Noether current	341
38.2 The fermion propagator	343
38.3 Feynman rules and scattering	345
38.4 Local symmetry and a gauge theory for fermions	346
Exercises	347
39 A rough guide to quantum electrodynamics	348
39.1 Quantum light and the photon propagator	348
39.2 Feynman rules and a first QED process	349
39.3 Gauge invariance in QED	351
Exercises	353
40 QED scattering: three famous cross-sections	355
40.1 Example 1: Rutherford scattering	355
40.2 Example 2: Spin sums and the Mott formula	356
40.3 Example 3: Compton scattering	357
40.4 Crossing symmetry	358
Exercises	359
41 The renormalization of QED and two great results	360
41.1 Renormalizing the photon propagator: dielectric vacuum	361
41.2 The renormalization group and the electric charge	364
41.3 Vertex corrections and the electron g -factor	365
Exercises	368
Y Some applications from the world	
X Some applications from the world of condensed matter	369
42 Superfluids	370
42.1 Bogoliubov's hunting license	370

Contraction of the second

A CARLES

42.2	Bogoliubov's transformation	372
42.3	Superfluids and fields	374
42.4	The current in a superfluid	377
Exe	rcises	379
43 The	e many-body problem and the metal	380
43.1	Mean-field theory	380
43.2	The Hartree–Fock ground state energy of a metal	383
43.3	Excitations in the mean-field approximation	386
	Electrons and holes	388
43.5	Finding the excitations with propagators	389
43.6	Ground states and excitations	390
43.7	The random phase approximation	393
Exe	rcises	398
44 Sup	perconductors	400
44.1	A model of a superconductor	400
44.2	The ground state is made of Cooper pairs	402
44.3	Ground state energy	403
44.4	The quasiparticles are bogolons	405
44.5	Broken symmetry	406
44.6	Field theory of a charged superfluid	407
\mathbf{Exe}	rcises	409
45 Th	e fractional quantum Hall fluid	411
	Magnetic translations	411
45.2	Landau Levels	413
45.3	The integer quantum Hall effect	415
45.4	The fractional quantum Hall effect	417
Exe	rcises	421
	Some applications from the world rticle physics	423
_		
	n-abelian gauge theory	424
	Abelian gauge theory revisited	424
	2 Yang–Mills theory	425
	B Interactions and dynamics of W_{μ}	428
	Breaking symmetry with a non-abelian gauge theory rcises	$\begin{array}{c} 430\\ 432 \end{array}$
	e Weinberg–Salam model	433
	The symmetries of Nature before symmetry breaking	434
	2 Introducing the Higgs field	437
	3 Symmetry breaking the Higgs field	438
	The origin of electron mass	439
	The photon and the gauge bosons	440
$\mathbf{E}\mathbf{x}\mathbf{e}$	rcises	443

48	48 Majorana fermions		
	48.1 The Majorana solution	444	
	48.2 Field operators	446	
	48.3 Majorana mass and charge	447	
	Exercises	450	
49	Magnetic monopoles	451	
	49.1 Dirac's monopole and the Dirac string	451	
	49.2 The 't Hooft–Polyakov monopole	453	
	Exercises	456	
50	Instantons, tunnelling and the end of the world	457	
	50.1 Instantons in quantum particle mechanics	458	
	50.2 A particle in a potential well	459	
	50.3 A particle in a double well	460	
	50.4 The fate of the false vacuum	463	
	Exercises	466	
A	Further reading	467	
в	Useful complex analysis		
	B.1 What is an analytic function?	473	
	B.2 What is a pole?	474	
	B.3 How to find a residue	474	
	B.4 Three rules of contour integrals	475	
	B.5 What is a branch cut?	477	
	B.6 The principal value of an integral	478	
Index			