Mathematical Physiology Blood Flow and Electrically Active Cells

H. Melvin Lieberstein

Newcastle, New South Wales, Australia

American Elsevier Publishing Company, Inc.

New York London Amsterdam

Contents

١

Preface																		xi
Acknowledgments																		xiii

Part I: Flow, Pressures, and Tension in the Arteries

Chapter 1. Possibilities and Scientific Basis for Accurate Measurement of Pressure	
Gradients in the Aorta	
	1
	3
	5
	0
······································	3
6. Flowmeters That Require a Chest Opening	
8.0	6
8. Continuum Models 1	
	8
Chapter 2. Pulsatile Flow in Rigid Tubes with a Given Pressure Gradient	
1. Importance of Pulsatility in Blood Flow 2	-
	6
	0
4. Point Velocity as a Series Solution Corresponding to a Given Analytic Pres-	_
	3
	8
	0
7. Volume Flow Rate under a Weakened Assumption on the Given Pressure	
	3
	4
Chapter 3. A Theory of Flows in Elastic Tubes	
1. 2	7
	3
	6
	1
	4
6. The Newton Method on a Banach Space: Theorems of Kantorovich and	
	8
7. Setting the Mathematical Problem	4
	6
y, it bounded bound the territories in territories in the territories in territori in territorie	0
10. 1 NO Bequences of Emetal Doundary function of the transferrer of the	3
11. A Solution Using Altman's Theorem	-
12. Summary of the Existence Theory for Equations (3.4) and (3.5)	7
13. Stability with Respect to the Occurrence of Radial Components	8

Chapter 4. A Proposed Wall Tension and Flow Computation Method	
1. The Laplace Law for Equilibrium Pressure and Circumferential Tension	91
2. Approximate Computation of Velocity in Terms of the Radius by One Picard-	
Type Correction	96
3. A Differential Equation for the Tension-versus-Stretch Relation	101
4. Computation of Velocity and Tension from v^1 in terms of r	104
Chapter 5: Computations of Flow Using Newton-Raphson Methods	
1. The Newton-Raphson Method as a "Self-Improvement" Procedure	107
2. Preference for the Modified Method	109
3. The Modified Newton-Raphson Method Used to Compute Flows in Com-	
pliant Channels	110
4. The Newton-Raphson Method Used to Compute Flows in Compliant	
Channels	113
5. Comments on Finite-Difference Methods	114
6. A Direct Evaluation of Wall Tension in Vivo	116
7. Significance of This Study for the Physiology of Blood Flow	118
Appendix: A Class of Bernoulli Laws	121
References	122

Part II: Toward a Mathematical Description of the Electrical Behavior of Electrically Active Cells

Introduction	127
Chapter 6. Gross Properties of Nerve, Muscle, and Other Electrically Active Cells	
1. An Outer-Space "Model"	133
2. Axon of a Nerve	134
3. Nerve Cells and Specialized Junctions between Them	144
4. Skeletal Muscle Fibers	149
5. Smooth Muscle Tissue	150
6. Heart Cells	152
7. Receptor Cells	157
8. Summary	158
Chapter 7. Reformulation of the Hodgkin-Huxley System of Partial Differential	
Equations	
1. The Role of Individual Contributors in Large Enterprises	161
2. An Empirical Study of the Electrical Properties of a Squid Membrane	164
3. Linear Laws for Electrical Components	173
4. Classical Transmission Lines	175
5. The Kelvin $r-c$ Line	182
6. Heaviside's <i>r-c-l</i> Distortion-Free Marine Cable	187
7. Contributions of Riemann, Du Bois-Reymond, and Picard to the Heaviside	
Position	193
8. The Kelvin Line Revisited	197
9. Propagation of Electrical Impulses on Nerve Fibers	205
10. Summary	214
Chapter 8. Mathematical Analysis of Some Basic Properties of the Reformulated	
Hodgkin-Huxley Differential Equations	
1. Purposes	215
2. Existence and Uniqueness for the Characteristic Boundary-Value Problem for	
$\psi_{xy} = f \dots \dots \dots \dots \dots \dots \dots \dots \dots $	217

CONTENTS

١

	Existence and Uniqueness for the Initial-Value (Cauchy) Problem for $\psi_{xy} = f$	228
4.	Application of the Existence-Uniqueness Theory for Initial-Value Problems	
	to the Reformulated Equations	234
5.	Riemann's Method for the Linear Second-Order Hyperbolic Equation in Two	
	Independent Variables	239
6.	Representation of the Solution of the Cauchy Problem for the Telegraphists'	
	Equation in Terms of the Riemann Function.	248
7.	New Integral Equations for Two Initial-Value Problems for the Reformulated	
	Equations Using Riemann's Method	250
8.	The Ordinary Differential Equation System as a Singular Perturbation	254
9.	The Ordinary Differential Equation System as a Time-Asymptotic ("Steady")	
	State	257
10.	Discussion of Sizes and Importance of L, H , and A	258
11.	Toroidal Current Sheets	260
	Inductance of Toroidal Coils	262
13.	Toroidal Coordinates	262
	Maxwell's Equations and Their Consequences for Toroidal Current Sheets	263
	Inductance of a Cylindrical Packet of Toroidally Composed Loops	266
	A Recapitulation	270
17.	Direct Observations of Large Magnetic Fields Propagating on Axons	271
18.	Works in Magnetobiology	272
19.	A Speculation about Membrane Mechanisms	273
Chapte	r 9. Numerical Investigations of the Basic Properties of the Reformulated	
	Hodgkin-Huxley Equations	
	Corroborative Calculations and Parameter Studies	277
	A "Cut-End" Calculation: Transient Development of the "Steady State"	279
	A Skeletal Muscle Fiber Calculation	291
	The Reformulated Ordinary Differential Equation System	292
5.	Tests of the Singular Perturbation Procedures	295
6.	Comparison of the Singular Perturbation Procedure for the Reformulated and	
	the Original Equations	299
	Repetitive Firing, Successive Current Thresholds and Their Limits	302
	Analogue Computer Studies of the Reformulated Equations	313
	r 10. Other Numerical Treatments Using the Reformulated Equations	
	Purpose	327
	Ephaptic Initiation in Closely Packed Cylindrical Cells	329
	The Partial Differential Equations for Noncylindrical Thin Axons	337
	The Ordinary Differential Equations for Noncylindrical Thin Axons	341
	Synapse Threshold Calculations	346
	Summary of Work on Noncylindrical Axons	348
	nces	349
	cal References	351
Index		353

.