Theory of **Probability**

A critical introductory treatment

Volume 1

BRUNO DE FINETTI

Professor of the Theory of Probability at the University of Rome

Translated by

ANTONIO MACHÍ

Assistant Professor of Mathematics at the University of Rome

and

ADRIAN SMITH

Lecturer in Mathematics at the University of Oxford, and Fellow of Keble College, Oxford

JOHN WILEY & SONS

Chichester · New York · Brisbane

Toronto

Contents

CHAPTER 1 INTRODUCTION 1

- 1.1 Why a new book on probability?
- 1.2 What are the mathematical differences? 2
- 1.3 What are the conceptual differences? 3
- 1.4 Preliminary clarifications
- 1.5 Some implications to note 7
- 1.6 Implications for the mathematical formulation 9

1

- 1.7 An outline of the 'introductory treatment' 11
- 1.8 A few words about the 'critical' Appendix 14
- 1.9 Other remarks 15
- 1.10 Some remarks on terminology 19
- 1.11 The tyranny of language 21
- 1.12 References 22

CHAPTER 2 CONCERNING CERTAINTY AND UNCERTAINTY 24

- 2.1 Certainty and uncertainty 24
- 2.2 Concerning probability 26
- 2.3 The range of possibility 27
- 2.4 Critical observations concerning the 'space of alternatives' 32
- 2.5 Logical and arithmetic operations 35
- 2.6 Assertion, implication; incompatibility 39
- 2.7 Partitions; constituents; logical dependence and independence 42
- 2.8 Representations in linear form 48
- 2.9 Means; associative means 56
- 2.10 Examples and clarifications 59
- 2.11 Concerning certain conventions of notation 66

CHAPTER 3 PREVISION AND PROBABILITY 69

- 3.1 From uncertainty to prevision 69
- 3.2 Digressions on decisions and utilities 76

- 3.3 Basic definitions and criteria 83
- 3.4 A geometric interpretation : the set \mathcal{P} of coherent previsions 89
- 3.5 Extensions of notation 91
- 3.6 Remarks and examples 92
- 3.7 Prevision in the case of linear and non-linear dependence 94
- 3.8 Probabilities of events 99
- 3.9 Linear dependence in general 105
- 3.10 The fundamental theorem of probability 111
- 3.11 Zero probabilities; critical questions 116
- 3.12 Random quantities with an infinite number of possible values 128

3.13 The continuity property 132

CHAPTER 4 CONDITIONAL PREVISION AND PROBABILITY 134

- 4.1 Prevision and the state of information 134
- 4.2 Definition of conditional prevision (and probability) 135
- 4.3 Proof of the theorem of compound probabilities 136
- 4.4 Remarks 139
- 4.5 Probability and prevision conditional on a given event H = 140
- 4.6 Likelihood 142
- 4.7 Probability conditional on a partition \mathcal{H} 143
- 4.8 Comments 144

- 4.9 Stochastic dependence and independence; correlation 146
- 4.10 Stochastic independence among (finite) partitions 149
- 4.11 On the meaning of stochastic independence 150
- 4.12 Stochastic dependence in the direct sense 152
- 4.13 Stochastic dependence in the indirect sense 153
- 4.14 Stochastic dependence through an increase in information 154
- 4.15 Conditional stochastic independence 156
- 4.16 Non-correlation; correlation (positive or negative) 161
- 4.17 A geometric interpretation 166
- 4.18 On the comparability of zero probabilities 173
- 4.19 On the validity of the conglomerative property 177

CHAPTER 5 THE EVALUATION OF PROBABILITIES 179

- 5.1 How should probabilities be evaluated? 179
- 5.2 Bets and odds 179
- 5.3 How to think about things 183
- 5.4 The approach through losses 185
- 5.5 Applications of the loss approach 191
- 5.6 Subsidiary criteria for evaluating probabilities 198
- 5.7 Partitions into equally probable events 199

- 5.8 The prevision of a frequency 202
- 5.9 Frequency and 'wisdom after the event' 207
- 5.10 Some warnings 211
- 5.11 Determinism, indeterminism, and other 'isms' 216

CHAPTER 6 DISTRIBUTIONS 221

- 6.1 Introductory remarks 221
- 6.2 What we mean by a 'distribution' 222
- 6.3 The parting of the ways 228
- 6.4 Distributions in probability theory 232
- 6.5 An equivalent formulation 241
- 6.6 The practical study of distribution functions 252
- 6.7 Limits of distributions 260
- 6.8 Various notions of convergence for random quantities 262
- 6.9 Distributions in two (or more) dimensions 269
- 6.10 The method of characteristic functions 280
- 6.11 Some examples of characteristic functions 287
- 6.12 Some remarks concerning the divisibility of distributions 296

Index 299