

Lecture Notes in Mathematics

21.-

Edited by A. Dold and B. Eckmann

659

Andrew M. Bruckner

Differentiation of Real Functions

Fachbereich Mathematik Technische Hochschule Darmstadt Bibliothek

r -

(...

Inv. Nr. B17 137

Springer-Verlag Berlin Heidelberg New York 1978 c

CHAPTER (0:	PRELIMINARIES	1
CHAPTER :	I:	DARBOUX FUNCTIONS	3
		 Examples of Darboux Functions Remarks Darboux functions and continuity Operations, combinations, and approximations Additional remarks 	3 4 5 7 7
CHAPTER I	II:	DARBOUX FUNCTIONS IN THE FIRST CLASS OF BAIRE	8
		 Equivalences Examples Operations, combinations and approximations The class of derivatives: preliminary comparisons with <i>BB</i>1 	8 12 14 16
		5. Approximate continuity	18
		approximately continuous functions of γ . Maximoff's theorem 8. Integral comparisons of C, α, Δ , and \mathcal{BB}_1	26 36 37
		9. Remarks	44
CHAPTER 2	III:	CONTINUITY AND APPROXIMATE CONTINUITY OF DERIVATIVES	45
_·		 Examples of discontinuous derivatives Characterization of the set of discontinuities of a derivative Approximate continuity of the derivative A relationship between <i>Q</i> and Δ 	45 46 48 50
CHAPTER I	IV:	THE EXTREME DERIVATES OF A FUNCTION	52
		 Definitions and basic properties Measurability and Baire classifications of extreme derivates A Durboux like property of Dipi derivatives 	52 54 58
		4. Relationships among the derivates	62
CHAPTER Y	V:	RECONSTRUCTION OF THE PRIMITIVE	71
		 Reconstruction by Riemann or Lebesgue integration Reconstruction of the primitive when its derivative is finite 	71 70
		3. Ambiguities when derivatives can be infinite	12 80
		4. Generalized bounded variation and generalized absolute continuity	81

CHAPTER VI: TH	E ZAHORSKI CLASSES	85
1. 2. 3.	Definitions and basic properties Derivatives and the classes Related conditions	85 87 94
CHAPTER VII: T	HE PROBLEM OF CHARACTERIZING DERIVATIVES	98
1. 2. 3. 4. 5.	Associated sets Perfect systems An analogue to characterizing integrals A characterization of Δ Miscellaneous remarks	100 100 103 103 108
CHAPTER VIII:	DERIVATIVES a.e. AND GENERALIZATIONS	111
~ 1. 2. 3. 4.	Derivatives a.e. A generalized derivative Universal generalized antiderivatives Differentiability a.e.	111 1 1 5 117 120
CHAPTER IX: TR	ANSFORMATIONS VIA HOMEOMORPHISMS	123
1. 2. 3. 4. 5.	Differentiability via inner homeomorphisms Differentiability via outer homeomorphism Derivatives via inner homeomorphisms Derivatives via outer homeomorphisms Summary and miscellaneous remarks	124 132 135 139 144
CHAPTER X: GEN	ERALIZED DERIVATIVES	147
1. 2. 3.	The approximate derivative - Basic properties Behavior of approximate derivatives' Miscellany (a) Infinite approximate derivative	147 150 161 161
	(b) Approximation	162
	(c) Transformations	162
-	(d) Theories of integration	163
	(e) Functions of several variables	164
4.	Other generalized derivatives	165 165
	(b) The qualitative derivative	166
	(c) Császár's derivative	167
	(d) Congruent derivatives	168
	(e) The symmetric derivative	168
	(f) Relative derivatives	169
	(g) Selective derivatives	170
	(h) Garg's derivative	171
	(i) Higher order generalized derivatives	172

	CHAPTER XI:	MONOTONICITY	173		
		 Some historical background for Section 2 A general theorem Applications of Theorem 2.5 Monotonicity conditions in terms of extreme 	174 176 184		
		derivates 5. Monotonicity when $D^{+}F \in \mathcal{B}_{1}$	188 192		
		6. Convexity	193		
•	CHAPTER XII:	STATIONARY AND DETERMINING SETS	199		
		 The stationary and determining sets for certain classes Miscellaneous remarks 	200 205		
	CHAPTER XIII	: BEHAVIOR OF TYPICAL CONTINUOUS FUNCTIONS	209		
		 Preliminaries and basic terminology The differentiability structure of typical 	209		
		continuous functions 3. Horizontal level sets 4. Total level set structure 5. Miscellaneous comments	212 214 217 222		
	CHAPTER XIV:	MISCELLANEOUS TOPICS	224		
		 Restrictive differentiability properties of functions Extensions to derivatives The set of points of differentiability of a function Derivatives, approximate continuity and summability Additional topics 	224 226 228 230 232		
	BIBLIOGRAPHY		234		
	NOTATIONAL INDEX				
	SUBJECT INDE	x	247		

 (\cdot)