High Resolution Digital Surface Model (DSM) to Support Modelling of Urban Flooding

Dissertation

Submitted to and approved by the Faculty of Civil Engineering University of Kaiserslautern

in candidacy for the degree of a Doktor-Ingenieur(Dr.-Ing.)

By

Md. Aktaruzzaman

Kaiserslautern 2011

(D 386)

2

Contents

Li	st of	Figures	v					
Li	st of	Tables	x					
Te	Terms and Abbreviations xi							
Li	st of	Symbols	xiii					
1	Intr	oduction	1					
	1.1	Motivation	1					
	1.2	Problem statement	2					
	1.3	Research objectives	5					
	1.4	Proposed approach	5					
	1.5	Organization of the dissertation						
2	Literature review							
	2.1	Urban drainage models	10					
	2.2	LiDAR data to generate high resolution DSM	14					
	2.3	Filtering algorithms of LiDAR data	16					
	2.4	The identification of objects (buildings and trees)	20					
	2.5	Street/road detection	24					
	2.6	Impervious (paved) and pervious (unpaved) surface detection	29					
3	Mat	terials and data types	33					
	3.1	Introduction	33					
	3.2	Study area	33					
	3.3	LiDAR data						
	3.4	Aerial images						
	3.5	Topographic maps						

	3.6	Image and LiDAR data co-registration
	3.7	Accuracy assessment and error matrix approach
		3.7.1 Selecting sampling scheme
		3.7.2 Error matrix computation and analysis
	3.8	Software packages
		3.8.1 ArcGIS
		3.8.2 MATLAB
		3.8.3 ECognition/Definiens
		3.8.4 MIKE FLOOD
	3.9	Conclusion
4	Filt	ering LiDAR data 45
	4.1	Introduction
	4.2	Proposed algorithm
		4.2.1 Selecting the block size
		4.2.2 Standard plane equation in 3D space
		4.2.3 Selecting points with minimum elevations within a block 49
		4.2.4 Fitting the plane 49
	4.3	Results and discussions
		4.3.1 Alcatraz study area
		4.3.2 Sensitivity of the filtering algorithm
		4.3.3 Casimirring study area
		4.3.4 Sensitivity of the algorithm on threshold selection
	4.4	Conclusion
5	Obj	ject classification 61
	5.1	Introduction
	5.2	Proposed methods for object classification
	5.3	Object clustering
	5.4	Building and tree classification
		5.4.1 Pseudo-gridding
		5.4.2 Planar surface analysis
	5.5	Detection of building outlines
		5.5.1 Separation of building points
		5.5.2 Cleaning the small clusters
		5.5.3 Approximating boundary outlines
	5.6	Conclusion

6	\mathbf{Stre}	et extraction and 3D modelling	93
	6.1	Introduction	93
	6.2	Street as an open channel	93
	6.3	Data types and sources	95
	6.4	Methodology	95
	6.5	Street points extraction	96
		6.5.1 Point-in-polygon algorithm	96
		6.5.2 Dense polygon boundary points generation	98
	6.6	Street connectivity (topology) construction	.00
		6.6.1 Detection of centreline	.00
		6.6.2 Construction of street connectivity	01
	6.7	Distinguishing the boundary points	03
	6.8	Detection of inner boundary lines	.05
		6.8.1 Street kerb detection	.05
		6.8.2 Delineation of street kerb	
	6.9	Reconstruction of street surfaces	
		6.9.1 An ideal street model	
	6 10		
		Modelling of street junctions	
		Application	
		Validation	
		Summary	
7	Imp	ervious(paved) and pervious(unpaved) surface detection 1	21
	7.1	Introduction	.21
	7.2	Overall approach	21
		7.2.1 Image layer stacking	.22
		7.2.2 Chessboard segmentation	.24
		7.2.3 Selection of region of interest (ROI)	25
		7.2.4 Multiresolution segmentation	26
		7.2.5 Rule-set development	.28
		7.2.6 Classification results	.29
		7.2.7 Accuracy of the final map	.31
	7.3	Application to Casimirring study area1	.33
	7.4	Differentiating grassland and bare soil	.36
		·	

	7.5	Conclusion				
8	Res	ulting data model 141				
	8.1	Introduction				
	8.2	DSM generation				
	8.3	$\label{eq:Qualitative assessment} Qualitative assessment \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $				
	8.4	Preparing the land use and land cover (LULC) map				
	8.5	Running the simulation				
		8.5.1 MOUSE module				
		8.5.2 MIKE 21 module				
		8.5.3 Coupling 1D and 2D flow				
		8.5.4 Simulation and results				
	8.6	Application to Casimirring study area				
	8.7	Summary				
9	Sun	mary and recommendations 163				
	9.1	Summary				
		9.1.1 LiDAR data processing				
		9.1.2 Object classification				
		9.1.3 3D street modelling				
		9.1.4 Pervious (unpaved) and impervious (paved) surface detection . 166				
		9.1.5 Resulting/integrated data model				
	9.2	Recommendations / Future needs				
References 169						