FOOD REFRIGERATION PROCESSES ANALYSIS, DESIGN AND SIMULATION

ANDREW C. CLELAND

Department of Biotechnology, Massey University, Palmerston North, New Zealand

ELSEVIER APPLIED SCIENCE LONDON and NEW YORK

CONTENTS

•

Preface .		•				•	·	•	•		•	v
Nomencl	ature							•				xiii
1 Introd	luction	•	•	•				•	•			1
1.1	The Im	porta	ance	of Re	efrige	ratio	n in 1	Food	Prese	ervati	on	1
1.2	Design	Requ	uirem	ients	for F	Food	Refri	gerati	on Pr	oces	ses	3
1.3	Existin	g Des	sign l	Practi	ce							3
1.4	Benefit	s fror	n Re	searc	h inte	o the	Desig	gn Pr	ocess			4
2.1	opment of Introdu	uctior	ı.								•	7 7
2.2	Formu Chilling					ical N				ing a	ind	8
2.2.1	Unst					nduct						8
2.2.2				ditio								11
2.2.3	Mov	ing B	lound	laries								14
2.2.4	Initia	al Co	nditi	ons								15
2.2.5	Forn	nulati	ion									15
2.3	Therma	al Pro	opert	ies dı	ıring	Freez	zing a	and C	hillin	g.		15
2.3.1	The	Mech	anisi	m of	Free	zing						16
2.3.2	Calc	ulatic	on of	f The	ermal	l Pro	pertie	es W	ithou	t Ph	ase	
	Char						-					18

CONTENTS

2.3.3	Calculation of Thermal Properties With Phase Change
2.3.4	Measurement of Thermal Properties
2.4	Formulation of Important Freezing and Chilling Situations
2.4.1	Chilling
2.4.2	Freezing
2.5	Mathematical Solution Techniques
	tors Limiting the Accuracy of Freezing and Chilling Time
Prec	liction
3.1	Introduction
3.2	Imprecise Knowledge of Freezing or Chilling Conditions
3.3	Imprecision in Thermal Data
3.4	Use of a Prediction Method Beyond its Range of
	Applicability
3.5	Shortcomings in the Prediction Method
3.6	Published Data for Prediction Method Assessment .
4 Free	zing and Chilling Time Prediction by Numerical Methods
4.1	Introduction
4.2	Finite Difference Schemes for the Infinite Slab
4.3	Finite Difference Schemes for Other Shapes
4.4	Testing of Finite Difference Schemes for the Third Kind
	of Boundary Condition
4.5	The Finite Element Method for an Infinite Slab .
4.5.1	Space Grids
4.5.2	Accurate Evaluation of the Global Conductance
	Matrix K
4.5.3	Accurate Evaluation of the Element Capacitance
	Matrix C
4.5.4	Selection of Time Steps
4.6	Finite Element Schemes for Other Shapes
4.7	Testing of Finite Element Schemes for the Third Kind of
	Boundary Condition
4.8	Numerical Methods for Other Boundary Conditions
4.9	Numerical Methods using the Moving Boundary Model
4.10	Testing of Numerical Methods for Time-Varying and
	Non-Uniform Conditions
4.11	The Future for Numerical Prediction Method Research

viii

!

CO	NT	EN	T S

5 Chil	ling Time Prediction by Analytical and Empirical Methods	79
5.1	Introduction	79
5.2	Analytical Prediction Methods for Regular Shapes With	
	the Third Kind of Boundary Condition and No Respiration	80
5.3	Empirical Prediction Methods for Irregular Shapes With	
	the Third Kind of Boundary Condition and No Respiration	83
5.4	Prediction Methods for Other Boundary Conditions and	
	Situations	89
5.5	Temperature Fluctuations in Stored Produce	92
5.6	Future Needs for Chilling Time Prediction Research .	93
6 Free	ezing Time Prediction by Analytical and Empirical Methods	95
6.1	Introduction	95
6.2	Prediction Methods for Slabs, Cylinders and Spheres	
	With the Third Kind of Boundary Condition	109
6.2.1	Analytically Derived Methods	110
6.2.2	Empirical Methods	111
6.3	Prediction Methods for Other Regular Geometric Shapes	
	With the Third Kind of Boundary Condition	120
6.3.1	Analytically Derived Methods	120
6.3.2	Empirical Methods	121
6.4	Prediction Methods for Irregular Shapes with the Third	
	Kind of Boundary Condition	128
6.5	Prediction Methods for Other Boundary Conditions .	130
6.5.1	Radiation and Convection	130
6.5.2	Convection and Evaporation	131
6.5.3	Time-Variable Conditions	131
6.5.4	Non-Symmetrical Boundary Conditions	134
6.6	Summary	135
7 Tha	wing Time Prediction	137
7.1	Introduction	137
7.2	Use of Numerical Methods	138
7.2.1	Slabs, Cylinders and Spheres	139
7.2.2	Other Regular Shapes	140
7.2.3	Irregular Shapes	142
	-	

ix

7.3	Analytical and Empirical Methods					14
7.3.1	Slabs, Cylinders and Spheres Wi	th the	Third	Kind	of	
	Boundary Condition	•				14
7.3.2	Other Shapes With the Third	Kind	of B	ound	ary	
	Condition					14
7.3.3	Other Boundary Conditions					15
7.4	Summary					15
7.4	Summary	•	•	•		

8.1	Introduction to Food Refrigeration	on l	Practio	ce.			153
8.2	Freezing Systems						155
8.2.1	Plate Freezers						155
8.2.2	Batch Air Freezers .						157
8.2.3	Continuous Air Freezers .		•				158
8.2.4	Semi-Continuous Air Freezers						159
8.3	Chilling Systems						160
8.4	Cold Storage and Cool Storage						161
8.5	Air-Conditioning					•	164
8.6	Thawing						164
8.7	Mechanical Refrigeration System	s					164
8.8	Complete Refrigeration Systems						167
8.9	Time-Variability of External Load	ds					167
8.10	Buffering of Temperature Change	es in	а Арр	licatic	ons		168
8.11	Influence of Control Systems						168

	9 A Moo	delling Process that can be Applied to Refrigeration System	is 171
	9.1	Introduction	. 171
,	9.2	Level of Detail in Models	. 172
1	9.3	Ordinary Versus Partial Differential Equations .	. 175
	9.4	A System for Model Development	. 177
	9.4.1	Mechanistic Model	. 177
	9.4.2	Nomenclature, Units, Classes of Variables	. 178
	9.4.3	Derivation of Algebraic and Differential Equations	. 180
	9.4.4	System Input Data and Initial Conditions .	. 183
	9.4.5	Selection of Numerical Solution Technique	. 184
	9.5	Model Formulation Example	. 185

х

CONTENTS	co	N	Т	E	N	Т	S
----------	----	---	---	---	---	---	---

10 Mo	lels for Simulating the Performance of Food Refrige	eratio	n	
Equ	ipment	•	. 19	1
10.1	Introduction		. 19	1
10.2	Models of System Components		. 19	4
10.2.1	Compressors		. 19	4
10.2.2	Delivery Pipelines		. 19	5
10.2.3	Condensers		. 19	6
10.2.4	Liquid Receivers		. 19	9
10.2.5	Liquid/Vapour Separator Vessels		. 19	9
10.2.6	Evaporators and Expansion Valves		. 20	3
10.2.6.1	Pump-Circulated Evaporators, Separator	s ar	nd	
	Control Valves		. 20	3
10.2.6.2	Flooded Evaporators, Surge Drums and Asso	ciate	ed	
	Control Valves		. 20	8
10.2.6.3	Direct Expansion Evaporators and Therme	ostat	ic	
	Expansion Valves		. 20	8
10.2.6.4	Future Needs—Evaporator and Control		ve	
	Models		. 21	1
10.2.7	Suction Pipelines		. 21	1
10.3	Applications Models		. 21	2
10.3.1	Heat Infiltration Through Walls, Floors, etc.		. 21-	4
10.3.2	Heat Input by Fans, Lights, People, etc.		. 21	5
10.3.3	Heat and Water Vapour Input Through	Op	en	
	Doors		. 21	5
10.3.4	Heat Transfer With the Product and Evaporation	n fro	m	
	the Product		. 21	7
10.3.4.1	Freezing		. 21	7
10.3.4.2	Chilling		. 220	0
10.3.4.3	Cold and Cool Storage		. 22	1
10.3.5	Heat Transfer With Room Fittings and Struct	ures	. 22	2
10.3.6	Water Vapour Transfer from Other Sources	•	. 22	3
10.4	Published Models for Complete Systems .		. 22	3
10.5	Future Directions for System Modelling .		. 23	0

11	Conclusions		•						233
11.	1 Chilling	Tim	e Pre	dictio	on				233

xi

xii		CONTENTS											
11.2 11.3 11.4	Th	awir	g Tir 1g Ti1 ing 0	ne Pi	redict	ion	.nts			• • •	• • •		234 236 236
Reference									•	•	•		239
Index											•		

•

i

1,