INSTITUT WAR — Bibliothek —
Wasserversorgung, Abwassertechnik
Abfalltechnik und Raumplanung
Technische Universität Darmstadt
Petersenstraße 13, 64287 Darmstadt
TEL. 0 61 51/16 36 59 + 16 27 48
FAX 0 61 51/16 37 58

W. A. R. - Bibliothek Inv.-Nr. D 19822

03.18IW

Biofilms in Wastewater Treatment

An Interdisciplinary Approach

Edited by Stefan Wuertz, Paul L. Bishop and Peter A. Wilderer

Contents

	Preface	viii
	About the editors List of contributors	x xi
	List of contributors	Al
	PART ONE: MODELING AND SIMULATION	· 1
	Modeling and simulation: Introduction Stefan Wuertz and Christina M. Falkentoft	3
1	What do biofilm models, mechanical ducks, and artificial life have in common? <i>Mathematical modeling in biofilm research</i>	8
1.1	Hermann J. Eberl Mathematics and biology: how do they go together?	9
1.2	What actually are mathematical models and what is mathematical modeling?	10
1.3	How mathematical models can be used to study complicated biofilm architectures	· 16
1.4	Beyond mathematical models: reductionism and holism, physicalism and vitalism as philosophical concepts in theoretical biology	20
1.5	Interdisciplinarity: why it is difficult to communicate with mathematicians	25
1.6	What do biofilm models, mechanical ducks, and artificial life have in common? (Conclusion)	28
1.7	References	28
2	Biofilm architecture: interplay of models and experiments Slawomir W. Hermanowicz	32
2.1	Tools for biofilm studies	32
2.2	Early observations and models	34
2.3	Standard diffusion-reaction model	36
2.4	New experimental techniques	37
2.5	Challenges in modeling	38
2.6	Modeling of structural heterogeneity	41
2.7	Conclusions and future directions	43
2.8	References	45
3	Towards new mathematical models for biofilms Volker Hösel and Volkmar Liebscher	49
3.1	Introduction	49
3.2	Strategies of mathematical modeling	50
33	Examples of mathematical models	52

iv Contents

3.4	Established biofilm models	54
3.5	Models from mathematical biology	55
3.6	Ideas for stochastic models	56
3.7	Concluding remarks	58
3.8	References .	58
4	Beyond models: requirements and chances of computational biofilms	60
	Hans-Joachim Bungartz and Miriam Mehl	
4.1	Introduction: simulating biofilm systems	60
4.2	Mathematical models	64
4.3	Numerical methods	69
4.4	Implementation	78
4.5	Embedding	80
4.6	Visualization: hot air or catalyst?	81
4.7	Validation	83
4.8	Concluding remarks	84
4.9	References	85
5	On the influence of fluid flow in a packed-bed biofilm reactor	88
	Stefan Esterl, Christoph Hartmann and Antonio Delgado	
5.1	Introduction	88
5.2	Some comments on specific topics	97
5.3	Current investigations	101
5.4	Influence of fluid flow and substrate concentration on biofilm architecture	110
5.5	Conclusions and outlook	111
5.6	References	114
	Modeling and simulation: Conclusions Paul Bishop	118
	PART TWO: ARCHITECTURE, POPULATION STRUCTURE AND FUNCTION	121
	Architecture, population structure and function: Introduction Stefan Wuertz	123
6	The effect of biofilm heterogeneity on metabolic processes Paul L. Bishop	125
6.1	Introduction	125
6.2	Biofilm properties	125
6.3	Confocal laser scanning microscopy	138
6.4	Cell-to-cell communication	139
6.5	Molecular probes	139
6.6	Concluding remarks	141
6.7	References	142

Contents

7	Mass transport in heterogeneous biofilms	147
7.1	Zbigniew Lewandowski and Haluk Beyenal Introduction	147
7.2	Biofilm heterogeneity and biofilm models	150
7.3	Quantifying nutrient uptake kinetics from the nutrient concentration profiles	153
7:4	Quantifying mass transport mechanisms from flow velocity profiles in biofilms	156
7.5	Local mass transport rates in heterogeneous biofilms	159
7.6	The concept of biofilms composed of discrete layers	162
7.7	Modeling mass transport and activity in biofilms composed of discrete layers	166
7.8	Experimental validation of the model of biofilms composed of discrete layers	168
7.9	Can discretizing biofilms reflect the effect of biofilm heterogeneity?	169
7.10	Biofilms grown at high flow velocities	171
7.11	Concluding remarks	172
7.12	References	175
8	The crucial role of extracellular polymeric substances in biofilms Hans-Curt Flemming and Jost Wingender	178
8.1	Introduction	178
8.2	Definition of EPS	179
8.3	Composition and properties	182
8.4	Mechanical stability mediated by EPS	187
8.5	Role of EPS in microbial aggregation	188
8.6	Function of EPS	194
8.7	Technical aspects of EPS	197
8.8	Ecological aspects	200
8.9	Outlook	202
8.10	References	203
9	The importance of physicochemical properties in biofilm formation and activity	211
	Rosario Oliveira, Joana Azeredo and Pilar Teixeira	
9.1	Introduction	211
9.2	How adhesion has been predicted	212
9.3	Surface properties relevant for adhesion	218
9.4	Concluding remarks	228
9.5	References	228
10	Influence of population structure on the performance of biofilm reactors Axel Wobus, Frank Kloep, Kerstin Röske and Isolde Röske	232
10.1	Introduction	233
10.2	Investigation of the biotic structure of biofilms: survey of methods	234
10.3	Case studies	240
10.4	Concluding remarks	258
10.5	References	259

vi Contents

11	Detachment: an often-overlooked phenomenon in biofilm research and modeling	264
	Eberhard Morgenroth	
11.1	Introduction	264
11.2	Detachment mechanisms	265
11.3	Influence of detachment on competition in biofilms and overall process	276
1110	performance	-, 0
11.4	Concluding remarks	286
11.5	References	288
	Architecture, population structure and function: Conclusions Stefan Wuertz	291
	PART THREE: FROM FUNDAMENTALS TO PRACTICAL APPLICATIONS	295
	From fundamentals to practical applications: Introduction Peter A. Wilderer	297
12	Deduction and induction in design and operation of biofilm	299
	reactors	
	Poul Harremoës	
12.1	Introduction	299
12.2	Technological development	300
12.3 12.4	Pragmatism versus theory-based models Models of biofilm reactors	302
12.4	Model collination and management estimation	306 309
12.5	Treatment plant design	314
12.7	Analysis of existing plant / pilot plant	319
12.8	Outstanding issues of engineering significance	320
12.9	References	323
13	Effect of clay particles on biofilm composition and reactor	325
	efficiency	
	Luis F. Melo and Maria J. Vieira	
13.1	Introduction	325
13.2	Properties of clay particles	326
13.3	Microorganisms in soils and in aqueous solutions: interactions with clays	329
13.4	Microhabitats created by clay particles	331
13.5	Genetic exchange	332
13.6	Effect of particles on the toxicity of biocides	333
13.7	Effects of particles on biofilm physical properties	336
13.8	Clay particles in wastewater treatment bioreactors	337
13.9	Summary and future research	338
13.10	References	340

Contents	371
Contents	V 1.

14	Bioprocess engineering and microbiologists: a profit-sharing alliance	343
	Peter A. Wilderer and Martina Hausner	
14.1	Postulate	343
14.2	Analysis of the current state of biotechnology	345
14.3	Chances and requirements	350
14.4	Concluding remarks	354
14.5	References	355
	Appendix: biography of microbial samples	357
	From fundamentals to practical applications: Conclusions Peter A. Wilderer	374
	Glossary	377
	Index	391

J