INFORMATION THEORY AND RELIABLE COMMUNICATION

Robert G. Gallager

Massachusetts Institute of Technology

BIBLIOTHEK oventar-Nr. 3239	F	AC	CHS	ERE	ic	H	VFC	ORM	ATI	K
nventar-Nr.: 3239	В	i	В	L	I	0	T	Н	E	K
	nveni	lar-	Nr.	:	_	37		3	7	

JOHN WILEY AND SONS, INC.

New York · London · Sydney · Toronto

CONTENTS

1	Con	nmunication Systems and Information Theory	1			
	1.1	Introduction	1			
	1.2	Source Models and Source Coding	4			
	1.3	Channel Models and Channel Coding	6			
	Hist	orical Notes and References	12			
2	A Measure of Information					
	2.1	Discrete Probability: Review and Notation	13			
	2.2	Definition of Mutual Information	16			
	2.3	Average Mutual Information and Entropy	23			
	2.4	Probability and Mutual Information for Continuous Ensembles	27			
	2.5	Mutual Information for Arbitrary Ensembles	33			
	Sun	nmary and Conclusions	37			
	Hist	forical Notes and References	37			
3	Cod	ing for Discrete Sources	38			
	3.1	Fixed-Length Codes	39			
	3.2	Variable-Length Code Words	43			
	3.3	A Source Coding Theorem	50			
	3.4	An Optimum Variable-Length Encoding Procedure	52			
	3.5	Discrete Stationary Sources	56			
	3.6	Markov Sources	63			
	Sun	nmary and Conclusions	69			
	Hist	orical Notes and References	70			
4	Disc	rete Memoryless Channels and Capacity	71			
	4.1	Classification of Channels	71			
	4.2	Discrete Memoryless Channels	73			
			vi			

xii Contents

	4.3	The Converse to the Coding Theorem	76			
	4.4	Convex Functions	82			
	4.5	Finding Channel Capacity for a Discrete Memoryless Channel	91			
	4.6	Discrete Channels with Memory	97			
		Indecomposable Channels	105			
	Sum	mary and Conclusions	111			
	Hist	orical Notes and References	111			
	App	endix 4A	112			
5	The	Noisy-Channel Coding Theorem	116			
	5.1	Block Codes	116			
	5.2	Decoding Block Codes	120			
	5.3	Error Probability for Two Code Words	122			
	5.4	The Generalized Chebyshev Inequality and the Chernoff				
		Bound	126			
	5.5	Randomly Chosen Code Words	131			
	5.6	Many Code Words—The Coding Theorem	135			
		Properties of the Random Coding Exponent	14			
	5.7	Error Probability for an Expurgated Ensemble of Codes	150			
	5,8	Lower Bounds to Error Probability	157			
		Block Error Probability at Rates above Capacity	17.			
	5.9	The Coding Theorem for Finite-State Channels	176			
		State Known at Receiver	182			
	Sun	nmary and Conclusions	18′			
	Hist	Historical Notes and References				
	App	pendix 5A	18			
۰	App	pendix 5B	19			
6	Techniques for Coding and Decoding					
	6.1	Parity-Check Codes	19			
		Generator Matrices	19			
		Parity-Check Matrices for Systematic Parity-Check Codes	20			
		Decoding Tables	20			
		Hamming Codes	20			
	6.2	The Coding Theorem for Parity-Check Codes	20			

		Contents	xiii
	6.3	Group Theory	209
		Subgroups	210
		Cyclic Subgroups	211
	6.4	Fields and Polynomials	213
		Polynomials	214
	6.5	Cyclic Codes	219
	6.6	Galois Fields	225
		Maximal Length Codes and Hamming Codes	230
		Existence of Galois Fields	235
	6.7	BCH Codes	238
		Iterative Algorithm for Finding $\sigma(D)$	245
	6.8	Convolutional Codes and Threshold Decoding	258
	6.9	Sequential Decoding	263
		Computation for Sequential Decoding	273
		Error Probability for Sequential Decoding	280
	6.10	Coding for Burst Noise Channels	286
		Cyclic Codes	291
		Convolutional Codes	297
	Sum	nmary and Conclusions	305
	Hist	forical Notes and References	305
	App	pendix 6A	306
	App	pendix 6B	309
7	Mer	noryless Channels with Discrete Time	316
	7.1	Introduction	316
	7.2	Unconstrained Inputs	318
	7.3	Constrained Inputs	323
	7.4	Additive Noise and Additive Gaussian Noise	333
		Additive Gaussian Noise with an Energy Constrained Input	335
	7.5	Parallel Additive Gaussian Noise Channels	343
	Sun	nmary and Conclusions	354
	His	torical Notes and References	354
8	Wa	veform Channels	355
	8.1	Orthonormal Expansions of Signals and White Gaussian Noise	355
		Gaussian Random Processes	362
		Mutual Information for Continuous-Time Channels	360

ĸiv	Content

Index

	8.2	White Gaussian Noise and Orthogonal Signals	371
		Error Probability for Two Code Words	374
		Error Probability for Orthogonal Code Words	379
	8.3	Heuristic Treatment of Capacity for Channels with Additive	
		Gaussian Noise and Bandwidth Constraints	383
	8.4	Representation of Linear Filters and Nonwhite Noise	390
		Filtered Noise and the Karhunen-Loeve Expansion	398
		Low-Pass Ideal Filters	402
	8.5	Additive Gaussian Noise Channels with an Input Constrained	
		in Power and Frequency	407
	8.6	Fading Dispersive Channels	431
	Sum	mary and Conclusions	439
	orical Notes and References	440	
9	Sou	rce Coding with a Fidelity Criterion	442
	9.1	Introduction	442
	9.2	Discrete Memoryless Sources and Single-Letter Distortion	
		Measures	443
	9.3	The Coding Theorem for Sources with a Fidelity Criterion	451
	9.4	Calculation of $R(d^*)$	457
	9.5	The Converse to the Noisy-Channel Coding Theorem	
		Revisited	465
	9.6	Discrete-Time Sources with Continuous Amplitudes	470
	9.7	Gaussian Sources with Square Difference Distortion	475
		Gaussian Random-Process Sources	482
	9.8	Discrete Ergodic Sources	490
	Sun	nmary and Conclusions	500
.*	Hist	torical Notes and References	50
	Exe	rcises and Problems	503
	Ref	erences and Selected Reading	569
	Glo	ssary of Symbols	578

581