Contents

Preface
page xvii

1 **Introduction to Partial Differential Equations**
 2.1 **Linear Advection**
 2.1.1 Conservation Law on an Unbounded Domain
 2.1.2 Integral Form of the Conservation Law
 2.1.3 Advection–Diffusion Equation
 2.1.4 Advection Equation on a Half-Line
 2.1.5 Advection Equation on a Finite Interval
 2.2 **Linear Finite Difference Methods**
 2.2.1 Basics of Discretization
 2.2.2 Explicit Upwind Differences
 2.2.3 Programs for Explicit Upwind Differences
 2.2.3.1 First Upwind Difference Program
 2.2.3.2 Second Upwind Difference Program
 2.2.3.3 Third Upwind Difference Program
 2.2.3.4 Fourth Upwind Difference Program
 2.2.3.5 Fifth Upwind Difference Program
 2.2.4 Explicit Downwind Differences
 2.2.5 Implicit Downwind Differences
 2.2.6 Implicit Upwind Differences
 2.2.7 Explicit Centered Differences
 2.3 **Modified Equation Analysis**
 2.3.1 Modified Equation Analysis for Explicit Upwind Differences

Preface	page xvii
1 **Introduction to Partial Differential Equations** | 1
2 **Scalar Hyperbolic Conservation Laws** | 6
 2.1 **Linear Advection** | 6
 2.1.1 Conservation Law on an Unbounded Domain | 6
 2.1.2 Integral Form of the Conservation Law | 8
 2.1.3 Advection–Diffusion Equation | 9
 2.1.4 Advection Equation on a Half-Line | 10
 2.1.5 Advection Equation on a Finite Interval | 11
 2.2 **Linear Finite Difference Methods** | 12
 2.2.1 Basics of Discretization | 12
 2.2.2 Explicit Upwind Differences | 14
 2.2.3 Programs for Explicit Upwind Differences | 16
 2.2.3.1 First Upwind Difference Program | 16
 2.2.3.2 Second Upwind Difference Program | 17
 2.2.3.3 Third Upwind Difference Program | 18
 2.2.3.4 Fourth Upwind Difference Program | 20
 2.2.3.5 Fifth Upwind Difference Program | 21
 2.2.4 Explicit Downwind Differences | 23
 2.2.5 Implicit Downwind Differences | 24
 2.2.6 Implicit Upwind Differences | 25
 2.2.7 Explicit Centered Differences | 26
 2.3 **Modified Equation Analysis** | 30
 2.3.1 Modified Equation Analysis for Explicit Upwind Differences | 30

Preface	page xvii
1 **Introduction to Partial Differential Equations** | 1
2 **Scalar Hyperbolic Conservation Laws** | 6
 2.1 **Linear Advection** | 6
 2.1.1 Conservation Law on an Unbounded Domain | 6
 2.1.2 Integral Form of the Conservation Law | 8
 2.1.3 Advection–Diffusion Equation | 9
 2.1.4 Advection Equation on a Half-Line | 10
 2.1.5 Advection Equation on a Finite Interval | 11
 2.2 **Linear Finite Difference Methods** | 12
 2.2.1 Basics of Discretization | 12
 2.2.2 Explicit Upwind Differences | 14
 2.2.3 Programs for Explicit Upwind Differences | 16
 2.2.3.1 First Upwind Difference Program | 16
 2.2.3.2 Second Upwind Difference Program | 17
 2.2.3.3 Third Upwind Difference Program | 18
 2.2.3.4 Fourth Upwind Difference Program | 20
 2.2.3.5 Fifth Upwind Difference Program | 21
 2.2.4 Explicit Downwind Differences | 23
 2.2.5 Implicit Downwind Differences | 24
 2.2.6 Implicit Upwind Differences | 25
 2.2.7 Explicit Centered Differences | 26
 2.3 **Modified Equation Analysis** | 30
 2.3.1 Modified Equation Analysis for Explicit Upwind Differences | 30
2.3.2 Modified Equation Analysis for Explicit Downwind Differences 31
2.3.3 Modified Equation Analysis for Explicit Centered Differences 32
2.3.4 Modified Equation Analysis Literature 33
2.4 Consistency, Stability and Convergence 35
2.5 Fourier Analysis of Finite Difference Schemes 38
 2.5.1 Constant Coefficient Equations and Waves 39
 2.5.2 Dimensionless Groups 40
 2.5.3 Linear Finite Differences and Advection 41
 2.5.4 Fourier Analysis of Individual Schemes 44
2.6 L^2 Stability for Linear Schemes 53
2.7 Lax Equivalence Theorem 55
2.8 Measuring Accuracy and Efficiency 69

3 Nonlinear Scalar Laws 81
 3.1 Nonlinear Hyperbolic Conservation Laws 81
 3.1.1 Nonlinear Equations on Unbounded Domains 81
 3.1.2 Characteristics 82
 3.1.3 Development of Singularities 84
 3.1.4 Propagation of Discontinuities 85
 3.1.5 Traveling Wave Profiles 89
 3.1.6 Entropy Functions 92
 3.1.7 Oleinik Chord Condition 95
 3.1.8 Riemann Problems 97
 3.1.9 Galilean Coordinate Transformations 99
 3.2 Case Studies 102
 3.2.1 Traffic Flow 102
 3.2.2 Miscible Displacement Model 103
 3.2.3 Buckley–Leverett Model 105
 3.3 First-Order Finite Difference Methods 111
 3.3.1 Explicit Upwind Differences 111
 3.3.2 Lax–Friedrichs Scheme 112
 3.3.3 Timestep Selection 117
 3.3.4 Rusanov’s Scheme 118
 3.3.5 Godunov’s Scheme 120
 3.3.6 Comparison of Lax–Friedrichs, Godunov and Rusanov 124
 3.4 Nonreflecting Boundary Conditions 125
 3.5 Lax–Wendroff Process 129
 3.6 Other Second Order Schemes 132
Nonlinear Hyperbolic Systems

4.1 Theory of Hyperbolic Systems
 4.1.1 Hyperbolicity and Characteristics
 4.1.2 Linear Systems
 4.1.3 Frames of Reference
 4.1.3.1 Useful Identities
 4.1.3.2 Change of Frame of Reference for Conservation Laws
 4.1.3.3 Change of Frame of Reference for Propagating Discontinuities
 4.1.4 Rankine–Hugoniot Jump Condition
 4.1.5 Lax Admissibility Conditions
 4.1.6 Asymptotic Behavior of Hugoniot Loci
 4.1.7 Centered Rarefactions
 4.1.8 Riemann Problems
 4.1.9 Riemann Problem for Linear Systems
 4.1.10 Riemann Problem for Shallow Water
 4.1.11 Entropy Functions

4.2 Upwind Schemes
 4.2.1 Lax–Friedrichs Scheme
 4.2.2 Rusanov Scheme
 4.2.3 Godunov Scheme

4.3 Case Study: Maxwell’s Equations
 4.3.1 Conservation Laws
 4.3.2 Characteristic Analysis

4.4 Case Study: Gas Dynamics
 4.4.1 Conservation Laws
 4.4.2 Thermodynamics
 4.4.3 Characteristic Analysis
 4.4.4 Entropy Function
 4.4.5 Centered Rarefaction Curves
 4.4.6 Jump Conditions
 4.4.7 Riemann Problem
 4.4.8 Reflecting Walls

4.5 Case Study: Magnetohydrodynamics (MHD)
 4.5.1 Conservation Laws
 4.5.2 Characteristic Analysis
 4.5.3 Entropy Function
 4.5.4 Centered Rarefaction Curves
 4.5.5 Jump Conditions
4.6 Case Study: Finite Deformation in Elastic Solids 221
4.6.1 Eulerian Formulation of Equations of Motion for Solids 221
4.6.2 Lagrangian Formulation of Equations of Motion for Solids 222
4.6.3 Constitutive Laws 223
4.6.4 Conservation Form of the Equations of Motion for Solids 225
4.6.5 Jump Conditions for Isothermal Solids 226
4.6.6 Characteristic Analysis for Solids 227

4.7 Case Study: Linear Elasticity 233

4.8 Case Study: Vibrating String 235
4.8.1 Conservation Laws 235
4.8.2 Characteristic Analysis 237
4.8.3 Jump Conditions 238
4.8.4 Lax Admissibility Conditions 240
4.8.5 Entropy Function 240
4.8.6 Wave Families for Concave Tension 241
4.8.7 Wave Family Intersections 245
4.8.8 Riemann Problem Solution 249

4.9 Case Study: Plasticity 255
4.9.1 Lagrangian Equations of Motion 255
4.9.2 Constitutive Laws 256
4.9.3 Centered Rarefactions 258
4.9.4 Hugoniot Loci 259
4.9.5 Entropy Function 261
4.9.6 Riemann Problem 261

4.10 Case Study: Polymer Model 267
4.10.1 Constitutive Laws 268
4.10.2 Characteristic Analysis 269
4.10.3 Jump Conditions 270
4.10.4 Riemann Problem Solution 271

4.11 Case Study: Three-Phase Buckley–Leverett Flow 273
4.11.1 Constitutive Models 273
4.11.2 Characteristic Analysis 275
4.11.3 Umbilic Point 276
4.11.4 Elliptic Regions 276

4.12 Case Study: Schaeffer–Schechter–Shearer System 277

4.13 Approximate Riemann Solvers 283
4.13.1 Design of Approximate Riemann Solvers 283
4.13.2 Artificial Diffusion 290
4.13.3 Rusanov Solver 292
4.13.4 Weak Wave Riemann Solver 293
4.13.5 Colella–Glaz Riemann Solver 295
4.13.6 Osher–Solomon Riemann Solver 297
4.13.7 Bell–Colella–Trangenstein Approximate Riemann Problem Solver 298
4.13.8 Roe Riemann Solver 303
4.13.9 Harten–Hyman Modification of the Roe Solver 312
4.13.10 Harten–Lax–van Leer Scheme 314
4.13.11 HLL Solvers with Two Intermediate States 316
4.13.12 Approximate Riemann Solver Recommendations 319

5 Methods for Scalar Laws 326
5.1 Convergence 326
 5.1.1 Consistency and Order 326
 5.1.2 Linear Methods and Stability 328
 5.1.3 Convergence of Linear Methods 330
5.2 Entropy Conditions and Difference Approximations 331
 5.2.1 Bounded Convergence 331
 5.2.2 Monotone Schemes 341
5.3 Nonlinear Stability 353
 5.3.1 Total Variation 353
 5.3.2 Total Variation Stability 354
 5.3.3 Other Stability Notions 357
5.4 Propagation of Numerical Discontinuities 359
5.5 Monotonic Schemes 361
 5.5.1 Smoothness Monitor 361
 5.5.2 Monotonizations 362
 5.5.3 MUSCL Scheme 364
5.6 Discrete Entropy Conditions 367
5.7 E-Schemes 368
5.8 Total Variation Diminishing Schemes 370
 5.8.1 Sufficient Conditions for Diminishing Total Variation 370
 5.8.2 Higher-Order TVD Schemes for Linear Advection 374
 5.8.3 Extension to Nonlinear Scalar Conservation Laws 378
5.9 Slope-Limiter Schemes 382
 5.9.1 Exact Integration for Constant Velocity 383
 5.9.2 Piecewise Linear Reconstruction 385
 5.9.3 Temporal Quadrature for Flux Integrals 387
 5.9.4 Characteristic Tracing 388
 5.9.5 Flux Evaluation 389
 5.9.6 Non-Reflecting Boundaries with the MUSCL Scheme 390
Contents

5.10 Wave Propagation Slope Limiter Schemes 391
 5.10.1 Cell-Centered Wave Propagation 391
 5.10.2 Side-Centered Wave Propagation 394
5.11 Higher-Order Extensions of the Lax–Friedrichs Scheme 395
5.12 Piecewise Parabolic Method 402
5.13 Essentially Non-Oscillatory Schemes 408
5.14 Discontinuous Galerkin Methods 412
 5.14.1 Weak Formulation 412
 5.14.2 Basis Functions 413
 5.14.3 Numerical Quadrature 414
 5.14.4 Initial Data 415
 5.14.5 Limiters 416
 5.14.6 Timestep Selection 417
5.15 Case Studies 418
 5.15.1 Case Study: Linear Advection 418
 5.15.2 Case Study: Burgers’ Equation 422
 5.15.3 Case Study: Traffic Flow 426
 5.15.4 Case Study: Buckley–Leverett Model 427

6 Methods for Hyperbolic Systems 432
 6.1 First-Order Schemes for Nonlinear Systems 432
 6.1.1 Lax–Friedrichs Method 432
 6.1.2 Random Choice Method 433
 6.1.3 Godunov’s Method 433
 6.1.3.1 Godunov’s Method with the Rusanov Flux 434
 6.1.3.2 Godunov’s Method with the Harten–Lax–vanLeer (HLL) Solver 435
 6.1.3.3 Godunov’s Method with the Harten–Hyman Fix for Roe’s Solver 436
 6.2 Second-Order Schemes for Nonlinear Systems 438
 6.2.1 Lax–Wendroff Method 438
 6.2.2 MacCormack’s Method 439
 6.2.3 Higher-Order Lax–Friedrichs Schemes 439
 6.2.4 TVD Methods 443
 6.2.5 MUSCL 447
 6.2.6 Wave Propagation Methods 448
 6.2.7 PPM 450
 6.2.8 ENO 452
 6.2.9 Discontinuous Galerkin Method 453
6.3 Case Studies 456
 6.3.1 Wave Equation 456
 6.3.2 Shallow Water 456
 6.3.3 Gas Dynamics 459
 6.3.4 MHD 461
 6.3.5 Nonlinear Elasticity 461
 6.3.6 Cristescu's Vibrating String 461
 6.3.7 Plasticity 464
 6.3.8 Polymer Model 467
 6.3.9 Schaeffer-Schechter-Shearer Model 470

7 Methods in Multiple Dimensions 474
 7.1 Numerical Methods in Two Dimensions 474
 7.1.1 Operator Splitting 474
 7.1.2 Donor Cell Methods 476
 7.1.2.1 Traditional Donor Cell Upwind Method 478
 7.1.2.2 First-Order Corner Transport Upwind Method 479
 7.1.2.3 Wave Propagation Form of First-Order Corner Transport Upwind 483
 7.1.2.4 Second-Order Corner Transport Upwind Method 485
 7.1.3 Wave Propagation 488
 7.1.4 2D Lax-Friedrichs 489
 7.1.4.1 First-Order Lax-Friedrichs 490
 7.1.4.2 Second-Order Lax-Friedrichs 491
 7.1.5 Multidimensional ENO 494
 7.1.6 Discontinuous Galerkin Method on Rectangles 494
 7.2 Riemann Problems in Two Dimensions 498
 7.2.1 Burgers' Equation 498
 7.2.2 Shallow Water 500
 7.2.3 Gas Dynamics 503
 7.3 Numerical Methods in Three Dimensions 506
 7.3.1 Operator Splitting 506
 7.3.2 Donor Cell Methods 508
 7.3.3 Corner Transport Upwind Scheme 510
 7.3.3.1 Linear Advection with Positive Velocity 513
 7.3.3.2 Linear Advection with Arbitrary Velocity 517
 7.3.3.3 General Nonlinear Problems 518
 7.3.3.4 Second-Order Corner Transport Upwind 519
 7.3.4 Wave Propagation 521
Contents

7.4 Curvilinear Coordinates 521
 7.4.1 Coordinate Transformations 522
 7.4.2 Spherical Coordinates 523
 7.4.2.1 Case Study: Eulerian Gas Dynamics in Spherical Coordinates 527
 7.4.2.2 Case Study: Lagrangian Solid Mechanics in Spherical Coordinates 529
 7.4.3 Cylindrical Coordinates 533
 7.4.3.1 Case Study: Eulerian Gas Dynamics in Cylindrical Coordinates 537
 7.4.3.2 Case Study: Lagrangian Solid Mechanics in Cylindrical Coordinates 539

7.5 Source Terms 542
7.6 Geometric Flexibility 542

8 Adaptive Mesh Refinement 544
 8.1 Localized Phenomena 544
 8.2 Basic Assumptions 546
 8.3 Outline of the Algorithm 547
 8.3.1 Timestep Selection 548
 8.3.2 Advancing the Patches 549
 8.3.2.1 Boundary Data 549
 8.3.2.2 Flux Computation 550
 8.3.2.3 Time Integration 552
 8.3.3 Regridding 553
 8.3.3.1 Proper Nesting 553
 8.3.3.2 Tagging Cells for Refinement 556
 8.3.3.3 Tag Buffering 559
 8.3.3.4 Logically Rectangular Organization 559
 8.3.3.5 Initializing Data after Regridding 559
 8.3.4 Refluxing 560
 8.3.5 Upscaling 560
 8.3.6 Initialization 561
 8.4 Object Oriented Programming 561
 8.4.1 Programming Languages 562
 8.4.2 AMR Classes 563
 8.4.2.1 Geometric Indices 563
 8.4.2.2 Boxes 567
 8.4.2.3 Data Pointers 569
 8.4.2.4 Lists 569
8.4.2.5 FlowVariables 570
8.4.2.6 Timesteps 571
8.4.2.7 TagBoxes 571
8.4.2.8 DataBoxes 571
8.4.2.9 EOSModels 572
8.4.2.10 Patch 572
8.4.2.11 Level 573

8.5 ScalarLaw Example 573
8.5.1 ScalarLaw Constructor 576
8.5.2 --initialize 576
8.5.3 stableDt 577
8.5.4 stuffModelGhost 577
8.5.5 stuffBoxGhost 578
8.5.6 computeFluxes 578
8.5.7 conservativeDifference 579
8.5.8 findErrorCells 579
8.5.9 Numerical Example 579

8.6 Linear Elasticity Example 580
8.7 Gas Dynamics Examples 581

Bibliography 584
Index 593