THIRD EDITION

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERFACE

David A. Patterson

University of California, Berkeley

John L. Hennessy

Stanford University

With a contribution by Peter J. Ashenden Ashenden Designs Pty Ltd

James R. Larus Microsoft Research

Daniel J. Sorin
Duke University

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an Imprint of Elsevier

Contents

Preface ix

CHAPTERS

 \odot

1 Computer Abstractions and Technology	2
--	---

1	1	Introduction	-
1.			

- 1.2 Below Your Program 11
- 1.3 Under the Covers 15
- 1.4 Real Stuff: Manufacturing Pentium 4 Chips 28
- 1.5 Fallacies and Pitfalls 33
- 1.6 Concluding Remarks 35
- 1.7 Historical Perspective and Further Reading 36
- 1.8 Exercises 36

COMPUTERS IN THE REAL WORLD Information Technology for the 4 Billion without IT 44

2 Instructions: Language of the Computer 46

- 2.1 Introduction 48
- 2.2 Operations of the Computer Hardware 49
- 2.3 Operands of the Computer Hardware 52
- 2.4 Representing Instructions in the Computer 60
- 2.5 Logical Operations 68
- 2.6 Instructions for Making Decisions 72
- 2.7 Supporting Procedures in Computer Hardware 79
- 2.8 Communicating with People 90
- 2.9 MIPS Addressing for 32-Bit Immediates and Addresses 95
- 2.10 Translating and Starting a Program 106
 - 2.11 How Compilers Optimize 116
- 2.12 How Compilers Work: An Introduction 121

	2.13	A C Sort Example to Put It All Together 121
\odot		Implementing an Object-Oriented Language 130
		Arrays versus Pointers 130
		Real Stuff: IA-32 Instructions 134
	2.17	Fallacies and Pitfalls 143
	2.18	Concluding Remarks 145
\odot		Historical Perspective and Further Reading 147
-		Exercises 147
		MPUTERS IN THE REAL WORLD ng Save Our Environment with Data 156
3	Arit	hmetic for Computers 158
	3.1	Introduction 160
	3.2	Signed and Unsigned Numbers 160
	3.3	Addition and Subtraction 170
	3.4	Multiplication 176
	3.5	Division 183
	3.6	Floating Point 189
	3.7	Real Stuff: Floating Point in the IA-32 217
	3.8	Fallacies and Pitfalls 220
	3.9	Concluding Remarks 225
\odot	3.10	Historical Perspective and Further Reading 229
	3.11	Exercises 229
		MPUTERS IN THE REAL WORLD
		nstructing the Ancient World 236
4	Ass	essing and Understanding Performance 238
	4.1	Introduction 240
	4.2	CPU Performance and Its Factors 246
	4.3	Evaluating Performance 254
	4.4	Real Stuff: Two SPEC Benchmarks and the Performance of Recent Intel Processors 259
	4.5	Fallacies and Pitfalls 266
	4.6	Concluding Remarks 270
\odot	4.7	Historical Perspective and Further Reading 272
	4.8	Exercises 272

COMPUTERS IN THE REAL WORLD Moving People Faster and More Safely 280

The Processor: Datapath and Control 282

5.1	Introduction	284
7. I	Introduction	7.04

- 5.2 Logic Design Conventions 289
- 5.3 Building a Datapath 292
- 5.4 A Simple Implementation Scheme 300
- 5.5 A Multicycle Implementation 318
- 5.6 Exceptions 340
- 5.7 Microprogramming: Simplifying Control Design 346
- 5.8 An Introduction to Digital Design Using a Hardware Design Language 346
 - 5.9 Real Stuff: The Organization of Recent Pentium Implementations 347
 - 5.10 Fallacies and Pitfalls 350
 - 5.11 Concluding Remarks 352
- 5.12 Historical Perspective and Further Reading 353
 - 5.13 Exercises 354

COMPUTERS IN THE REAL WORLD Empowering the Disabled 366

Enhancing Performance with Pipelining 368

- 6.1 An Overview of Pipelining 370
- 6.2 A Pipelined Datapath 384
- 6.3 Pipelined Control 399
- 6.4 Data Hazards and Forwarding 402
- 6.5 Data Hazards and Stalls 413
- 6.6 Branch Hazards 416
- 6.7 Using a Hardware Description Language to Describe and Model a Pipeline 426
 - 6.8 Exceptions 427
 - 6.9 Advanced Pipelining: Extracting More Performance 432
 - 6.10 Real Stuff: The Pentium 4 Pipeline 448
 - 6.11 Fallacies and Pitfalls 451
 - 6.12 Concluding Remarks 452
- 6.13 Historical Perspective and Further Reading 454
 - 6.14 Exercises 454

COMPUTERS IN THE REAL WORLD Mass Communication without Gatekeepers 464

7.1	Introduction 468
7.2	The Basics of Caches 473
7.3	Measuring and Improving Cache Performance 492
7.4	Virtual Memory 511
7.5 7.6	A Common Framework for Memory Hierarchies 538 Real Stuff: The Pentium P4 and the AMD Opteron Memory Hierarchies 546
7.7	Fallacies and Pitfalls 550
7.8	Concluding Remarks 552
	Historical Perspective and Further Reading 555
	Exercises 555
Sto	orage, Networks, and Other Peripherals 564
Sto	rage, Networks, and Other Peripherals 564
Sto 8.1	rage, Networks, and Other Peripherals 564 Introduction 566
Sto	rage, Networks, and Other Peripherals 564
Sto 8.1 8.2	Introduction 566 Disk Storage and Dependability 569 Networks 580
8.1 8.2 8.3	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/O
8.1 8.2 8.3 8.4	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/O Devices 581 Interfacing I/O Devices to the Processor, Memory, and Operating
8.1 8.2 8.3 8.4 8.5	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/O Devices 581 Interfacing I/O Devices to the Processor, Memory, and Operating System 588 I/O Performance Measures: Examples from Disk and File
8.1 8.2 8.3 8.4 8.5	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/O Devices 581 Interfacing I/O Devices to the Processor, Memory, and Operating System 588 I/O Performance Measures: Examples from Disk and File Systems 597
8.1 8.2 8.3 8.4 8.5 8.6	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/O Devices 581 Interfacing I/O Devices to the Processor, Memory, and Operating System 588 I/O Performance Measures: Examples from Disk and File Systems 597 Designing an I/O System 600
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/O Devices 581 Interfacing I/O Devices to the Processor, Memory, and Operating System 588 I/O Performance Measures: Examples from Disk and File Systems 597 Designing an I/O System 600 Real Stuff: A Digital Camera 603
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Introduction 566 Disk Storage and Dependability 569 Networks 580 Buses and Other Connections between Processors, Memory, and I/Devices 581 Interfacing I/O Devices to the Processor, Memory, and Operating System 588 I/O Performance Measures: Examples from Disk and File Systems 597 Designing an I/O System 600 Real Stuff: A Digital Camera 603 Fallacies and Pitfalls 606

Saving Lives through Better Diagnosis 622

Multiprocessors and Clusters 9-2

- 9.1 Introduction 9-4
- Programming Multiprocessors 9-8 9.2
- Multiprocessors Connected by a Single Bus 9-11

	9.4	Multiprocessors	Connected b	y a Network	9-20
--	-----	-----------------	-------------	-------------	------

- 9.5 Clusters 9-25
- 9.6 Network Topologies 9-27
- 9.7 Multiprocessors Inside a Chip and Multithreading 9-30
- 9.8 Real Stuff: The Google Cluster of PCs 9-34
- 9.9 Fallacies and Pitfalls 9-39
- 9.10 Concluding Remarks 9-42
- 9.11 Historical Perspective and Further Reading 9-47
- 9.12 Exercises 9-55

APPENDICES

Assemblers, Linkers, and the SPIM Simulator A-2

- A.1 Introduction A-3
- A.2 Assemblers A-10
- A.3 Linkers A-18
- A.4 Loading A-19
- A.5 Memory Usage, A-20
- A.6 Procedure Call Convention A-22
- A.7 Exceptions and Interrupts A-33
- A.8 Input and Output A-38
- A.9 SPIM A-40
- A.10 MIPS R2000 Assembly Language A-45
- A.11 Concluding Remarks A-81
- A.12 Exercises A-82

The Basics of Logic Design B-2

- B.1 Introduction B-3
- B.2 Gates, Truth Tables, and Logic Equations B-4
- B.3 Combinational Logic B-8
- B.4 Using a Hardware Description Language B-20
- B.5 Constructing a Basic Arithmetic Logic Unit B-26
- B.6 Faster Addition: Carry Lookahead B-38
- B.7 Clocks B-47
- B.8 Memory Elements: Flip-flops, Latches, and Registers B-49
- B.9 Memory Elements: SRAMs and DRAMs B-57
- B.10 Finite State Machines B-67
- B.11 Timing Methodologies B-72

- B.12 Field Programmable Devices B-77
- B.13 Concluding Remarks B-78
- B.14 Exercises B-79

Mapping Control to Hardware C-2

- C.1 Introduction C-3
- C.2 Implementing Combinational Control Units C-4
- C.3 Implementing Finite State Machine Control C-8
- C.4 Implementing the Next-State Function with a Sequencer C-21
- C.5 Translating a Microprogram to Hardware C-27
- C.6 Concluding Remarks C-31
- C.7 Exercises C-32

A Survey of RISC Architectures for Desktop, Server, and Embedded Computers D-2

- D.1 Introduction D-3
- D.2 Addressing Modes and Instruction Formats D-5
- D.3 Instructions: The MIPS Core Subset D-9
- D.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs D-16
- D.5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs D-19
- D.6 Instructions: Common Extensions to MIPS Core D-20
- D.7 Instructions Unique to MIPS64 D-25
- D.8 Instructions Unique to Alpha D-27
- D.9 Instructions Unique to SPARC v.9 D-29
- D.10 Instructions Unique to PowerPC D-32
- D.11 Instructions Unique to PA-RISC 2.0 D-34
- D.12 Instructions Unique to ARM D-36
- D.13 Instructions Unique to Thumb D-38
- D.14 Instructions Unique to SuperH D-39
- D.15 Instructions Unique to M32R D-40
- D.16 Instructions Unique to MIPS16 D-41
- D.17 Concluding Remarks D-43
- D.18 Acknowledgments D-46
- D.19 References D-47

Index I-1

- Glossary G-1
- Further Reading FR-1